efecte apa hidrogenata in insuficiență cognitivă ușoară

Abstract

Fundal:

Stresul oxidativ este unul dintre factorii cauzali în patogeneza bolilor neuro-degenerative incluzând  afectarea cognitivă ușoară (MCI) și demență. Am raportat anterior că hidrogenul molecular (H2) acționează ca un antioxidant terapeutic și preventiv.

Obiectiv:

Evaluăm efectele consumului de apă hidogenata H2 (apă infuzată cu hidrogen molecula H2) asupra șoarecilor cu model de stres oxidativ și subiecților umani  cu MCI.

metode:

Șoarecii transgenici care exprimă o formă dominant-negativă de aldehidă dehidrogenază 2 au fost folosiți ca model de demență. Șoarecii cu stres oxidativ sporit li s-a permis să bea apă hidrogenata H2. Pentru un studiu clinic controlat cu placebo, dublu-orb, dominat de rang, 73 de subiecți umani cu MCI au băut ~ 300 ml de apă hidrogenata H2 (grupa H2) sau apă placebo (grup de control) pe zi, și scala cognitivă a evaluării bolii Alzheimer Scorurile (ADAS-cog) au fost determinate după 1 an.

Rezultate:

La șoareci, consumul de apă hidrogenizata H2 a scăzut markerii de stres oxidativ și a suprimat declinul deficienței de memorie și neurodegenerare. Mai mult, durata medie de viață a grupului apa hidrogenata H2-apă a fost mai lungă decât cea a grupului de control. La subiecții MCI, deși nu a existat o diferență semnificativă între H2 și grupurile de control în scorul ADAS-cog după 1 an, purtătorii geno-ului de apolipoproteină E4 (APOE4) din grupul apa hidrogenata H2 au fost îmbunătățiți semnificativ pe ADAS-cog total punctaj și scor de reamintire a cuvântului (unul dintre sub-scorurile din scorul ADAS-cog).

Concluzie:

H2-apa hidrogenata poate avea un potențial pentru suprimarea demenței într-un model de stres oxidativ și în purtătorii APOE4 cu MCI.

1. INTRODUCERE

Stresul oxidativ este unul dintre factorii cauzali în patogeneza bolilor neurodegenerative majore incluzând boala Alzheimer (AD), deficiența cognitivă ușoară (MCI) și boala Parkinson (PD) [ 1 , 2 ]. Mai mult, genotipul apolipoproteinei E4 (APOE4) este un risc genetic pentru AD, iar creșterea stresului oxidativ la purtătorii APOE4 este considerată ca unul dintre modificatorii riscului [ 3 ].

Pentru a explora antioxidanții alimentari eficienți pentru a atenua neurodegenerarea dependentă de vârstă, poate fi util să se construiască șoarec-model în care fenotipurile AD ar progresa într-o manieră dependentă de vârstă, ca răspuns la stresul oxidativ. Am construit șoareci transgenici DAL101 care exprimă un polimorfism al genei aldehidă dehidrogenază mitocondrială 2 (ALDH2 * 2) [ 4 ]. ALDH2 * 2 este responsabil pentru o deficiență în activitatea ALDH2 și este specific asiaticilor din Nord-Est [ 5 ]. Am raportat anterior că deficiența de ALDH2 este un factor de risc pentru AD-ul cu debut tardiv la populația japoneză [ 6 ], care a fost reprodus prin studii chineze și coreene în populațiile respective [ 7 , 8 ]. Șoarecii DAL101 au prezentat o capacitate scăzută de a detoxifica 4-hidroxi-2-nonenal (4-HNE) în neuronii corticali și, prin urmare, o neurodegenerare dependentă de vârstă, declin cognitiv și o durată de viață scurtată [ 4 ].

Am propus că hidrogenul molecular (H 2 ) are potențial ca antioxidant nou [ 9 ] și numeroase studii au sugerat puternic potențialul său pentru aplicații preventive și terapeutice [ 10 – 12 ]. Pe lângă experimentele extinse pe animale, au fost raportate peste 25 de studii clinice pe oameni care examinează eficacitatea H2, [ 11 , 12 ] inclusiv studii clinice dublu-orb. Pe baza acestor studii, domeniul medical cu hidrogen crește rapid.

Există mai multe metode de administrare a hidrogenului molecular H2, inclusiv inhalarea gazului de hidrogen (H 2 -gas), apă potabilă avand dizolvat hidrogen H 2 (apă hidrogenta/hidrogenizata H 2 ) și injectarea de soluție salină dizolvată cu H2 (soluție salină bogată în hidrogen)13 ]. Băutul de apă hidrogenata H 2 a prevenit deficiențele cronice induse de stres în învățare și memorie, prin reducerea stresului oxidativ la șoareci [ 14 ] și protejează celulele neuronale prin stimularea expresiei hormonale a ghrelinei15 ]. În plus, injectarea de soluție salină bogată în hidrogen a îmbunătățit funcția de memorie într-un model de șobolan din demența indusă de amiloid β prin reducerea stresului oxidativ [ 16 ].Mai mult decât atât, inhalarea de hidrogen în timpul resuscitării normoxice a îmbunătățit rezultatul neurologic la un model de șobolan de stop cardiac independent de gestionarea țintelor  [ 17 ].

În acest studiu, am examinat dacă consumul de apă hidrogenata H 2 ar putea suprima deteriorarea memoriei dependente de îmbătrânire indusă de stresul oxidativ la șoarecii DAL101. În continuare, într-un studiu randomizat controlat cu placebo dublu-orb, am investigat dacă H 2- apă hidrogenata ar putea întârzia progresia MCI, astfel cum a fost evaluată de scorurile de pe scala de cotație a evaluării bolii Alzheimer (scăderea ADAS-cog) [ 18 , 19 ] de la valoarea inițială la 1 an. Am constatat o îmbunătățire semnificativă a cogniției la 1 an la purtătorii cu genotipul APOE4 în grupul apa hidrogenata H 2 folosind scoruri sub și total ADAS-cog.

2. MATERIALE ȘI METODE

2.1. Aprobarea etică și acordul de participare

Acest studiu asupra animalelor a fost aprobat de Comitetul de îngrijire și utilizare a animalelor de la Școala Medicală Nippon. Metodele au fost realizate „în conformitate” cu instrucțiunile și reglementările relevante.

Protocolul de studiu clinic a fost aprobat de comitetele de etică ale Universității din Tsukuba și înregistrat în rețeaua de informații medicale a spitalului universitar (UMIN) ca UMIN000002218 pe 17 iulie 2009 la https://upload.umin.ac.jp/cgi-open -bin / ctr / ctr.cgi? function = history & action = list & type = sumar & recptno = R000002-725 & language = J.

Participanții au fost înrolați începând cu iulie 2009. Toți pacienții au oferit consimțământ scris scris înainte de investigațiile de cercetare, care au fost efectuate conform Declarației de la Helsinki și revizuirile ulterioare.

2.2. Șoareci transgenici DAL101

Șoarecii transgenici (DAL101) care exprimă o transgenă care conține o versiune de mouse de ALDH2 * 2 au fost construiți așa cum s-a descris anterior [ 4 ]. Deoarece numărul de șoareci utilizați pentru fiecare experiment nu a fost consecvent din cauza unei dificultăți de reproducere, a fost specificat numărul șoarecilor utilizați. Toți șoarecii au fost ținuți într-un ciclu lumină / întuneric de 12 ore cu acces ad libitumla alimente și apă. Examinatorii au efectuat experimente într-o manieră orbită. Deoarece nu s-a observat declin semnificativ la deficiența cognitivă la vârsta de 18 luni la șoarecii de tip sălbatic cu același fundal genetic (C57BL / 6), [ 4 ] efectele H 2- apă nu au fost evaluate în acest studiu.

2.3. Apa cu hidrogen

Pentru experimente pe animale, apa hidrogenata H 2 saturată a fost preparată așa cum s-a descris anterior [ 14 ]. Pe scurt, hidrogen molecular H2 a fost dizolvat în apă sub presiune înaltă (0,4 MPa) până la un nivel suprasaturat, iar apa H 2saturată a fost depozitată sub presiune atmosferică într-o pungă de aluminiu fără spațiu. Ca un control, apa hidrogenata H2 a fost degazată complet prin agitare blândă timp de o zi. Șoarecii li s-a dat apă liber folosind vase de sticlă închise echipate cu o linie de ieșire care conține doi rulmenți cu bile, care împiedicau apa să fie degazată. Vasul a fost reumplut cu H2-apă hidrogenata 6 zile pe săptămână la 14:00. Concentrația hidrogen H2 a fost încă mai mare de 0,3 mM în ziua următoare.

Pentru acest studiu clinic, apa hidrogenata H 2 disponibilă în comerț a fost un cadou de la Blue Mercury, Inc. (Tokyo, Japonia). H2-apa hidrogenata  (500 ml) a fost împachetată într-o pungă de aluminiu fără spațiu pentru a menține concentrația de hidrogen H2 și sterilizată la 80 ° C timp de 30 min. Concentrația de hidrogen H2 a fost măsurată folosind un senzor de hidrogen (Unisense, Aarhus N, Danemarca) și a fost utilizată dacă valoarea a fost mai mare de 0,6 mM. Apa placebo ambalată într-un pachet identic (500 ml) a fost furnizată de Blue Mercury Inc. Această companie nu a jucat niciun rol în colectarea datelor, gestionarea, analiza sau interpretarea datelor.Un pachet cu 500 ml placebo sau H2-apă hidrogenata pe zi a fost furnizat după ce au arătat pachete goale anterioare, prin care ratele de conformitate auto-raportate în grupul de intervenție au fost calculate ca volumul de H2-apă hidrogenata la 1 an.

2.4. Măsurarea stresului oxidativ

Ca marker de stres oxidativ, 8-OHdG [ 20 ] a fost măsurat folosind probe de urină, care au fost colectate între 9:00 și 10:00 am, așa cum s-a descris anterior [ 21 ], prin utilizarea unui test imuno-enzimatic legat de enzimă (New 8-OHdG verificați; Institutul japonez pentru controlul îmbătrânirii, Shizuoka, Japonia).Valorile au fost normalizate prin concentrația de creatinină urinară, care a fost testată folosind un kit standard (Wako, Kyoto, Japonia). Ca un marker de stres oxidativ suplimentar în creier, MDA acumulată a fost determinată folosind un kit de analiză Bioxytech MDA-586 (Percipio Biosciences, CA, SUA).Nivelurile de malondialdehidă (MDA) au fost normalizate față de concentrațiile de proteine.

2.5. Măsurarea deprecierii memoriei: sarcină de recunoaștere a obiectelor

Abilitățile de învățare și memorie au fost examinate folosind sarcina de recunoaștere a obiecțiilor (ORT) [ 4 ]. Un șoarece a fost obișnuit într-o cușcă timp de 4 ore, iar apoi două obiecte în formă diferită au fost prezentate soarecelui-ului timp de 10 min ca antrenament. Numărul de ori de explorare și / sau adulmecare a fiecărui obiect a fost contabilizat pentru primele 5 minute (test de antrenament). Frecvențele (%) la testul de antrenament au fost considerate ca fiind mediul de bază. Pentru testarea reținerii memoriei după 1 zi, unul dintre obiectele originale a fost înlocuit cu unul nou, cu o formă diferită, apoi timpii de explorare și / sau adulmecare au fost contorizați pentru primele 5 minute (test de retenție). Când șoarecii ar pierde abilitățile de învățare și de memorie, frecvențele de explorare și / sau adulmecare a fiecărui obiect ar trebui să fie egale (aproximativ 50%) în sesiunea de antrenament, ceea ce indică faptul că șoarecii au arătat un interes similar pentru fiecare obiect din cauza lipsei de memorie pentru obiecte. Abilitățile de învățare și memorie au fost evaluate ca scăderea frecvențelor (%) la testul de retenție din fiecare fundal (testul de formare).

2.6. Măsurarea deprecierii memoriei: sarcină de evitare pasivă (PA)

Aparatul era format din două compartimente, unul luminos și celălalt întunecat, despărțite de o ușă glisantă verticală [ 22 ]. În ziua 1, am plasat inițial un soarece în compartimentul luminos timp de 20 de secunde.După deschiderea ușii, soarecele putea intra în compartimentul întunecat (șoarecii preferă instinctiv să fie în întuneric). În ziua 2, soricelul a fost din nou plasat în secțiunea de lumină pentru a permite soarecelui să se deplaseze în secțiunea întunecată. După ce soarecele a intrat în compartimentul întunecat, ușa a fost închisă. După 20 de secunde, soarecele/mouse-ul a primit un șoc electric de 0,3 mA timp de 2 secunde. Șoarecelui i s-a permis să se recupereze timp de 10 secunde, apoi a fost returnat în cușca de acasă. În ziua 3, la 24 de ore de la șoc, mouse-ul a fost din nou plasat în secțiunea de lumină, cu ușa deschisă pentru a permite mouse-ului să se deplaseze în secțiunea întunecată. Am examinat timpul de latență pentru a intra prin ușă.Abilitățile de învățare și memorie au fost evaluate ca scăderea timpilor de latență după șocul electric din fiecare fundal (înainte).

2.7. Imunizarea regiunii hipocampale CA1

Pentru a examina pierderea neuronală și activarea gliala, regiunea hipocampului a fost colorată cu un anticorp anti-NeuN specific neuronului piramidal (clonă A60; Merck Millipore, Darmstadt, Germania), o proteină acidă fibrilă anti-glială anti-glială specifică astrocitelor (anti-GFAP) anticorp (Thermo Scientific, MA, SUA) sau un anticorp anti-IbaI specific microglia (Wako). Șoarecii au fost perforați transcardial pentru a fi fixați cu 4% paraformaldehidă în soluție salină tamponată cu fosfat (PBS) sub anestezie, iar creierul lor a fost crioprotectat cu zaharoză 30%, iar apoi creierul înghețat a fost secționat la o grosime de 8 μm. După incubarea cu fiecare anticorp primar, secțiunile au fost tratate cu anticorpi secundari (Vector Laboratories, CA, SUA) și imunereactivitatea lor a fost vizualizată prin metoda complexului avidin-biotină (Vector Laboratories).

2.8. Subiecte ale studiului clinic

Acest studiu a fost un studiu randomizat, dublu-orb, controlat cu placebo, efectuat ca parte a proiectului Tone, un studiu epidemiologic în desfășurare efectuat în Tone Town, Ibaraki, Japonia, așa cum este descris în detaliu anterior [ 23 , 24 ]. Acest oraș este situat la aproximativ 40 km nord-est de centrul Tokyo și este format din 22 de districte. Studiul de bază al proiectului Tone a cuprins 1.032 de participanți în iulie 2009, iar subiecții studiului au fost recrutați de la acești participanți.

Criteriile de eligibilitate au vârsta de 67 de ani sau mai mult, putând da consimțământul scris în scris pentru participarea la studiul de față, cu un diagnostic de MCI, putând respecta următoarea cerință: o bună conformitate cu consumul de apă; participarea la examenele programate pentru evaluare; păstrarea unui jurnal de înregistrare a consumului de apă, cu un scor ischemic Hachinski modificat de 4 sau mai puțin și un scor de scădere a depresiunii geriatrice de 15 itemi de 6 sau mai puțin. Pe scurt, cu 3 luni înainte de acest studiu clinic, toți participanții au fost supuși unei evaluări de grup care a utilizat un set de 5 teste care au măsurat următoarele domenii cognitive: atenție; memorie; funcția visuospatială; limba; și raționamentul descris anterior [ 25 ]. Deficiență obiectivă în cel puțin 1 domeniu cognitiv bazat pe media scorurilor la măsurile neuropsihologice din acel domeniu și 1 reducere SD folosind corecții normative pentru vârstă, ani de educație și sex.

Criteriile de excludere aveau criteriile „Manualul de diagnostic și statistic al tulburărilor mintale (DSM) -IV TR” pentru boli demențiale, boli grave sau instabile, un istoric în ultimii 5 ani de boli infecțioase grave care afectează creierul și / sau boli maligne , un istoric de consum de alcool sau droguri sau dependență (de DSM-IV TR) în ultimii 5 ani și care a primit orice tip de medicamente anti-Alzheimer și inițierea recentă (în termen de 4 săptămâni) a medicamentelor care afectează sistemul nervos central. Când scorul examenului de mini-mental mental (MMSE) [ 26 ] a fost mai mic de 24, subiecții au fost excluși.

În acest studiu, subiecții au fost repartizați aleatoriu fie unui grup de intervenție, care a primit H2-apă hidrogenata în fiecare zi timp de 1 an, fie unui grup de control, care a primit apă placebo. Secvența de alocare a fost determinată de numere aleatorii generate de computer care au fost ascunse investigatorilor și subiecților.Doctorii. Nakajima și Ikejima au generat secvența de alocare aleatorie, au înscris participanții și au atribuit participanților la intervenții. Toți participanții și furnizorii de îngrijiri au fost mascați orb.

În protocolul inițial, ne-am propus să administrăm H2-apă hidrogenata timp de 2 ani și să evaluăm rezultatele secundare; cu toate acestea, a trebuit să oprim proiectul în 2011 prin dezastrul Tsunami și nu am putut obține datele de 2 ani și rezultatele secundare.

Genotipul APOE4 a fost determinat așa cum este descris [ 25 ].

2.9. Considerații statistice

Toate analizele statistice au fost efectuate de un biostatistician academic folosind software-ul SAS versiunea 9.2 (SAS Institute Inc, Cary, NC, SUA). Rezultatele au fost considerate semnificative la p <0.05.

Pentru compararea a două grupuri în abilitățile de învățare și memorie, și planurile de viață, t -testul Student fără două perechi a fost utilizat pentru compararea grupului apa hidrogenata H 2 c u grupul de control. Pentru celelalte experimente pe animale, s-a aplicat analiza unidirecțională a varianței (ANOVA) cu analiza post-Tukey-Kramer sau Dunnett post-hoc, dacă nu se menționează altfel.

Pentru studiul clinic, am planificat să recrutăm un număr total de 120 de pacienți, ceea ce ar oferi 90% putere pentru a detecta o dimensiune a efectului de 0,6 folosind un test pe două fețe cu un nivel de semnificație de 5%, dar dimensiunea reală a eșantionului pentru analiza primară a fost 73, ceea ce a dus la o putere de 70% în același cadru. Punctele finale au fost scoruri în versiunea japoneză a ADAS-cog la 1 an, iar modificările au fost evaluate prin testul lui Mann-Whitney (analiză non-parametrică), precum și testul tal lui Student (analiza parametrică).

3. REZULTATE

3.1. Stresul oxidativ redus de apă hidrogenata la șoarecii DAL

Șoarecii masculi DAL101 au primit H2 – apa hidrogenata sau apă de control pentru a bea ad libitum de la vârsta de 1 lună și au continuat până la vârsta de 18 luni. Grupul H2-apă hidrogenata DAL101 a arătat o scădere semnificativă a nivelului unui marker de stres oxidativ, 8-hidroxi-2′-dezoxiguanozină (8-OHdG) [ 20 ] la vârsta de 14 luni (supliment. Fig. S1A ). Mai mult, șoarecii DAL101 au crescut tensiunea oxidativă în creier, măsurată de nivelul MDA ca un marker alternativ de stres oxidativ, iar H2-apă hidrogenata a arătat o recuperare semnificativă a acestui nivel crescut de MDA la șoarecii DAL101 (Suppl. Fig. S1B ).

3.2. Apa de hidrogen a suprimat o scădere a deprecierii învățării și a memoriei

Am examinat abilitățile de învățare și memorie folosind ORT [ 4 ]. Așa cum s-a descris în MATERIALE ȘI METODE , abilitățile de învățare și memorie au fost evaluate ca scăderea frecvenței (%) la testul de retenție din fiecare fundal (test de formare). Șoarecii au primit apă sau apă hidrogenata H 2 de la vârsta de 1 lună. La vârsta de 14 luni, grupul H 2 apa hidrogenata a memorat în mod semnificativ obiectele originale și a arătat preferința pentru obiectul nou mai mult decât grupul de control (Fig. 1A 1A în vârstă de 14 luni ).

Un fișier extern care conține o imagine, ilustrare etc. Numele obiectului este CAR-15-482_F1.jpg

Apa cu hidrogen a prevenit declinul cognitiv. H2-apa a fost furnizată de la vârsta de 1 lună ( A, C ) și de la vârsta de 8 luni ( B ). Șoarecii au fost supuși primei sarcini de recunoaștere a obiecțiilor (ORT) la vârsta de 14 luni ( A, B, 14 luni ) și a doua ORT la vârsta de 18 luni ( A, B, 18 luni) ). Indicii de recunoaștere au fost obținuți ca frecvență (%) de explorare și / sau adulmecare a obiectului care va fi înlocuit sau a celui nou care a fost înlocuit. Index Indicele de recunoaștere (%) indică frecvențele din testul de retenție al ORT după scăderea celor din testul de antrenament (fundal). WT, de tip sălbatic; (DAL, H2 -), DAL101 șoareci care beau apă de control degazată; (DAL, H 2 +), DAL101 șoareci care beau apă cu hidrogen. Datele sunt afișate ca media ± SEM. n = 9, * p <0,05, ** p <0,01 de testul t al lui Student. C ) Șoarecii au fost supuși unei sarcini de evitare pasivă. Latențele treptate înainte și după șocul electric sunt obținute și Δ Latența (-s) trece prin indicarea scăderii latențelor treptate după ce înainte de șocul electric. WT, de tip sălbatic (n = 10); DAL, H2 -, DAL101 șoareci care primesc apă de control degazată (n = 8); și DAL, H2 +, DAL101 șoareci care primesc H2-apă (n = 8). Datele sunt afișate ca media ± SEM. p <0,05.

La vârsta de 18 luni, șoarecii au fost supuși celui de-al doilea ORT, care poate fi realizat folosind diferite obiecte la vârsta de 18 luni [ 14 ]. Șoarecii în vârstă DAL101 care beau apă hidrogenata H 2 au memorat în continuare semnificativ obiectele originale și au preferat unul mai nou decât grupul martor (Fig. 1A 1A, 18 luni ).

În continuare, pentru a testa efectele potabile ale apei hidrogenate H 2 din stadiul ulterior, am început să dăm apă hidrogenata H 2 la șoarecii masculi DAL101 la vârsta de 8 luni în loc de 1 lună și am supus ORT la vârsta de 14 luni ( Fig. 1B 1B în vârstă de 14 luni) și a doua ORT la vârsta de 18 luni (Fig. 1B 1B 18 luni ). Chiar și când șoarecii au început să bea la vârsta de 8 luni, apa hidrogenata H 2 a suprimat semnificativ declinul abilităților de învățare și memorie la vârsta de 18 luni, precum și la vârsta de 14 luni (Fig. 1B 1B ) .

Mai mult decât atât, am supus șoarecii la PA [ 22 ] la vârsta de 18 luni ca o metodă alternativă. Într-o zi după ce s-a dat un șoc electric de 0,3 mA timp de 2 secunde, șoarecii C57BL / 6 de tip sălbatic au memorat șocul, astfel cum a fost evaluat prin scăderea timpului (timpurilor) de latență pentru a reintra în compartimentul întunecat din fiecare fundal (Fig. 1C1C ). Grupul H 2- apă  hidrogenata a suprimat semnificativ declinul în învățare și memorie mai mult decât grupul de control (Fig. 1C 1C ).

Astfel, consumul de apă hidrogenata 2  a suprimat deficitul de învățare și memorie la șoarecii de stres oxidativ.

3.3. Neurodegenerare suprimată de hidrogen-apă

Pentru a examina dacă apa H 2 ar putea preveni neurodegenerarea la șoarecii DAL101 în vârstă, am colorat hipocampul cu un anticorp anti-NeuN specific neuronului (Fig. 2A 2A ). Neurodegenerarea a fost evaluată prin activări gliale folosind un anticorp anti-GFAP și un anticorp anti-Iba-I microglia-specific. Celulele imun pozitive pe câmpul vizual (FOV) au fost contorizate în regiunea CA1 (Fig. 2B 2B ).

Un fișier extern care conține o imagine, ilustrare etc. Numele obiectului este CAR-15-482_F2.jpg

Apa de hidrogen a suprimat neurodegenerarea. A ) Regiunea CA1 a hipocampului a fost colorată cu anticorpi împotriva NeuN (un marker neuronal), GFAP (un marker astrocitic) sau Iba-1 (un marker microglial) (bare de scară: 50 µm). Panourile din dreapta arată imagini mărită ale pătratelor din panourile din stânga (bare de scară: 10 µm). B ) Celulele pozitive pentru anticorpii anti-NeuN, anti-GFAP și anti-Iba-I pe câmpul vizual (FOV) au fost contorizate în regiunea CA1 (n = 5). Datele sunt afișate ca media ± SD. p <0,05, ** p <0,01 (tip sălbatic vs DAL), # p <0,05 (H2-apă hidrogenata vs. apă de control în DAL).

Numărul neuronilor a fost redus în grupul DAL101 de control, în comparație cu grupul de tip sălbatic, iar grupa H2-DAL101 a arătat o tendință de recuperare a scăderii (Fig. 2A 2A ). Așa cum s-a descris anterior, [ 4 ] șoarecii control DAL101 au prezentat o creștere a activării gliale, iar grupul H2-apă  hidrogenata a suprimat activarea glială îmbunătățită în regiunea CA1 (Fig. 2 2 , GFAP și Iba-I).

3.4. Hidrogen-apă a prelungit durata medie de viata  a șoarecilor

Șoarecii DAL101 au prezentat o durată de viață mai scurtă, care a fost descrisă și anterior [ 4 ]. Pentru a examina dacă consumul de apă hidrogenata H 2  a atenuat durata de viață scurtată, șoarecii DAL101 au început să bea controlul sau H2-apă hidrogenata la vârsta de 1 lună. Deși apa hidrogenata H2 nu a extins durata de viață maximă (Fig. 3A 3A ), H2-apă hidrogenata a extins semnificativ durata de viață a șoarecilor DAL101 (Fig. 3B 3B ).

Un fișier extern care conține o imagine, ilustrare etc. Numele obiectului este CAR-15-482_F3.jpg

Extinderea duratei de viață medii prin consumul continuu de H 2- apă. A ) Curba Kaplan-Meier reprezentând supraviețuirea femelelor C57BL / 6 șoareci (de tip sălbatic), femele DAL101 șoareci apă de control (apă de control) și H 2- apă (H 2- apă). B ) Fiecare punct indică durata de viață a fiecărui mouse.Barele indică durata medie de viață a fiecărui grup. p < 0,05 (p = 0,036) de testul t al lui Student.

3.5. studiu clinic randomizat, controlat cu placebo

 Aparente privind recrutarea, randomizarea și urmărirea pentru studiu. Au fost randomizati în total 81 de subiecți din 1.032 de participanți; cu toate acestea, 3 din grupul de control și 5 din grupul de intervenție au fost diagnosticați ca fiind neeligibili după randomizare și nu au fost inclusi în această analiză. Caracteristicile de bază și factorii de viață au fost echilibrați între grupurile de studiu (Tabelul 1 1 ). Alocarea aleatorie a fost stratificată în funcție de vârsta de ~ 74 ani și scorul MMSE de ~ 28 puncte. Rata medie de conformitate a apei potabile a fost estimată la 64% în ambele grupuri la 1 an, ceea ce înseamnă că subiecții au băut 320 ml / zi în medie. Media scorurilor totale ADAS-cog în H2 – și grupurile de control au fost 8,04 și, respectiv, 7,89, fără nicio semnificație.

Un fișier extern care conține o imagine, ilustrare etc. Numele obiectului este CAR-15-482_F4.jpg

Profilul recrutării, randomizarea și urmărirea acestui studiu. Acest studiu a fost un studiu randomizat, dublu-orb, controlat cu placebo, realizat ca parte a proiectului Tone, un studiu epidemiologic în curs de desfășurare efectuat în Tone Town, Ibaraki, Japonia [ 23 , 24 ].

tabelul 1

Caracteristici de fond ale 73 de subiecți cu insuficiență cognitivă ușoară.

Control (n = 38) Intervenție (n = 35)
Însemna SD sau% Însemna SD sau%
Femeie * 20 (52,6%) 19 (54,3%)
Vârsta (ani) 74,45 5,44 73.97 5.11
Indicele masei corporale (kg / m2) 23,55 2,59 23.19 4,08
Tensiunea arterială sistolică (mmHg) 131.26 12.35 135.14 13.31
Tensiunea arterială diastolică (mmHg) 77.92 7.13 78.89 9,53
Educație (ani) 11.26 2,71 11.57 2.83
Băutor actual de alcool * 19 (50,0%) 14 (40,0%)
Fumator curent * 4 (10,5%) 5 (14,3%)
Obiceiul actual de exercițiu * 27 (71,1%) 22 (62,9%)
Transportator APOE4 * 6 (15,7%) 7 (20,0%)
Istorie de familie * 2 (5,3%) 2 (5,7%)
Comorbiditate *
Hipertensiune 15 (39,5%) 14 (40,0%)
Diabetul zaharat 4 (10,5%) 5 (14,3%)
dislipidemia 4 (10,5%) 4 (11,4%)
Accident vascular cerebral 2 (5,3%) 1 (2,9%)
depresiune 1 (2,6%) 2 (5,7%)
MMSE 28.08 1.66 27.83 1,74
ADAS-Cog 7,89 3,19 8.04 3,47

* indică frecvența (%).

După 1 an, nu au fost observate daune sau efecte neintenționate la fiecare grup și a existat o tendință de îmbunătățire a scorului ADA-cog total atât în ​​grupele H 2 – cât și în grupurile de control (supliment. Tabelul S1 ), probabil din cauza intervențiilor ca exercițiu moderat prin proiectul Tone. Mai mult decât atât, subiecții din grupul  apa hidrogenata H 2 au avut mai multe tendințe de îmbunătățire decât cei din grupurile de control, deși nu a existat nicio semnificație (supliment. Tabelul S1 ). Cu toate acestea, când acordăm atenție modificărilor de scor în purtătorii genotipului APOE4, totalul ADAS-cog-urilor și scorurile de reamintire a cuvintelor (unul dintre sub-scoruri) s-au îmbunătățit semnificativ, astfel cum este evaluat prin distribuția modificării scorului la fiecare subiect ( Fig. 5 5 ). La transportatorii APOE4, grupul apa hidrogenata H 2 s-a îmbunătățit semnificativ, în timp ce grupul de control a înrăutățit ușor. ( fig.6 ) Deși subiecții din grupul de control nu s-au îmbunătățit, șase și cinci din 7 subiecți s-au îmbunătățit la scorurile ADAS totale și, respectiv, la scorurile de reamintire a cuvintelor, în grupul apa hidrogenata H 2al transportatorilor APOE4.

Un fișier extern care conține o imagine, ilustrare etc. Numele obiectului este CAR-15-482_F5.jpg

Distribuția modificărilor scorului sub și total ADAS-cog. Distribuția modificării punctajului de reamintire a cuvântului ( A ), un scor secundar al ADAS-cog și ( B ) scorului total ADAS-cog-urilor în transportatorii APOE4 (stânga) și APOE4 (dreapta). Fiecare punct indică schimbarea subiecților individuali. Diferența dintre grupurile de control H2 și control a fost semnificativă la purtătorii APOE4 printr-o analiză non-parametrică, precum și o analiză parametrică. A ) p = 0.036 (prin testul t al lui Student) și p = 0.047 (prin testul lui U al lui Mann-Whitney) și ( B ) p = 0.037 (prin testul t al lui Student) și p = 0.044 (prin testul lui U al lui Mann-Whitney) ) pentru ( A ) și, respectiv, ( B ). Barele medii din pastile indică valori mediane.

Un fișier extern care conține o imagine, ilustrare etc. Numele obiectului este CAR-15-482_F6.jpg

Modificări ale scorului ADAS-cog sub-dur și total al fiecărui subiect din operatorii de operare APOE4.Fiecare linie indică modificarea de un an a punctajului de reamintire a cuvântului ( A ) și a scorului total ADAS-cog ( B ) al unui subiect din transportatorii APOE4. * indică p <0.05 după cum se arată în legenda din Fig. 5 .

DISCUŢIE

Tulburările neurodegenerative dependente de vârstă sunt implicate în stresul oxidativ. În acest studiu, am arătat urmatoarele:consumul de H2-apa hidrogenata a suprimat declinul biochimic, comportamental și patologic la șoarecii de stres oxidativ. Scorul ADAS-cog [ 18 ] este măsura cognitivă generală cea mai larg utilizată în studiile clinice ale AD [ 27 , 28 ].Scorul ADAS-cog evaluează mai multe domenii cognitive incluzând memoria, limbajul, praxisul și orientarea. În general, ADAS-cog s-a dovedit de succes în scopul propus. Studiul clinic prezent arată că consumul de apă hidrogenata H 2 a îmbunătățit semnificativ scorul ADAS-cog al purtătorilor genotipului APOE4.

Am arătat anterior că șoarecii DAL101 prezintă neurodegenerare dependentă de vârstă și declin cognitiv și scurtează durata de viață [ 4 ]. Șoarecii DAL101 prezintă fenotipuri demențiale într-o manieră dependentă de vârstă, ca răspuns la o cantitate din ce în ce mai mare de stres oxidativ [ 4 ]. Stresul oxidativ îmbunătățește peroxidarea lipidelor, ceea ce duce la formarea de aldehide α, β nesaturate, foarte reactive, cum ar fi MDA și 4-HNE [ 29 ]. Acumularea de proteine ​​aduse de 4-HNE în neuronii piramidali a fost observată la creierul pacienților cu AD și PD [ 30 ]. Declinul capacității ALDH2 * 2 nu a reușit să detoxifice aldehide citotoxice și, prin urmare, creșterea stresului oxidativ [ 31 ].

Mai mult, șoarecii dublu-transgenici au fost construiți prin încrucișarea șoarecilor DAL101 cu șoarecii Tg2576, care exprimă o formă mutantă a proteinei precursoare amiloide umane (APP). Au prezentat depuneri accelerate de amiloid, fosforilare tau și glioză, precum și capacități de învățare și capacități de memorie afectate. Durata de viață a șoarecilor APP / DAL a fost semnificativ mai scurtă decât cea a șoarecilor APP și DAL101 [ 32 ]. Astfel, aceste animale-model pot fi de ajutor pentru a explora antioxidanți care ar putea fi capabili să prevină demența dependentă de vârstă. Într-adevăr, o dietă care conține Chlorella a arătat efecte atenuate asupra declinului cognitiv în DAL101 [ 33 ].

Unul dintre cei mai puternici factori de risc pentru AD este statutul de purtător al genotipului APOE4, iar rolurile APOE4 în evoluția AD au fost examinate pe larg din diferite aspecte [ 34 , 35 ]. APOE4 crește, de asemenea, numărul de lipoproteine ​​aterogene și accelerează aterogeneza [ 36 ]. Stresul oxidativ crescut la purtătorii APOE4 este considerat unul dintre modificatorii riscului [ 3 ]. O combinație de antioxidanți a îmbunătățit funcția cognitivă a subiecților în vârstă după 3 ani, în special la purtătorii APOE423 ]. Acest rezultat clinic anterior este de acord cu prezentul studiu. 2 acționează ca un antioxidant eficient în interiorul celulelor, datorită capacității sale de a difuza rapid între membrane9 ]. Mai mult, ca funcție secundară anti-oxidativă, H 2 pare să activeze factorul 2 legat de NF-E2 (Nrf2), [ 10 ] care reduce stresul oxidativ prin exprimarea unei varietăți de enzime antioxidante [ 37 ]. Am raportat că băutul cu apă H 2 a prevenit arterioscleroza folosind șoareci knockout APOE, un model de dezvoltare spontană a aterosclerozei care însoțește o scădere a stresului oxidativ [ 38 ]. Astfel, este posibil ca consumul de apă hidrogenata H 2 sa imbunătățească deteriorarea vasculară prin scăderea stresului oxidativ ca antioxidant direct sau indirect, ceea ce duce la îmbunătățirea unui model demintia și a subiecților MCI. În acest studiu, ne-am concentrat pe genotipul izoformelor APOE; cu toate acestea, polimorfismul genei APOE în regiunea promotor influențează expresia genei APOE [ 39 ]. Astfel, va fi important să examinăm efectul apei H2 hidrogenate sub acest polimorfism.

Pentru atenuarea AD, a fost acordată o atenție semnificativă exercițiilor fizice regulate și moderate pentru a ajuta la reducerea riscului de demență și la prevenirea dezvoltării MCI la pacienții îmbătrâniți [ 40 – 42 ].Exercițiul moderat îmbunătățește metabolismul energetic și suprimă expresia citokinelor pro-inflamatorii [ 43 ] și protejează sistemele vasculare [ 40 , 44 , 45 ]. H2 prezintă funcții multiple printr-o scădere a nivelului de citokine pro-inflamatorii și o creștere a metabolismului energetic pe lângă rolurile anti-oxidative. Pentru a exercita mai multe funcții, H 2 reglează diverse căi de transducție a semnalului și expresia multor gene [ 10 ]. De exemplu, H 2 protejează celulele neuronale și stimulează metabolismul energetic prin stimularea expresiei hormonale a ghrelinei [ 15 ] și respectiv a factorului 21 de creștere a fibroblastului [ 21 ]. În schimb, H 2 ameliorează inflamația prin scăderea citokinelor pro-inflamatorii [ 46 ].Astfel, combinația acestor funcții de H2 asupra antiinflamării și stimulării metabolismului energetic ar putea împiedica declinul funcției creierului, [ 10 ] ambele fiind îmbunătățite prin exerciții fizice regulate și moderate. Astfel, este posibil ca funcțiile multiple ale H 2 , inclusiv stimularea metabolismului energetic și antiinflamarea, să contribuie la îmbunătățirea modelului de demență și a subiecților MCI.

Ca un aspect alternativ, H 2 suprima factorul nuclear al căii de transcripție a celulelor T activate (NFAT) pentru a regla diferite tipare de expresie genică [ 47 ]. Semnalizarea NFAT este modificată în AD și joacă un rol important în conducerea neurodegenerarii mediată de β amiloid [ 48 ]. Mai mult decât atât, cascada transcripțională NFAT contribuie la sinaptotoxicitatea β amiloidă [ 49 ]. În plus, o implicare activă a căii de semnalizare mediată de NFAT în degenerarea mediată de α-sin-neuroni în PD [ 50 ]. Într-adevăr, pacienții cu PD s-au îmbunătățit prin consumul de apă hidrogenata H 2, așa cum a fost dezvăluit de un studiu clinic dublu-orb, controlat cu placebo 51 ] și o scară mai mare a unui studiu clinic este în curs de investigare [ 52 ]. Astfel, efectele benefice ale H 2 asupra bolilor neurodegenerative pot fi explicate prin suprimarea reglării transcripționale a NFAT.

CONCLUZIE

Studiul de față sugerează posibilitatea de a încetini progresul demenței prin consumul de apă H 2 prin experimente pe animale și un studiu de intervenție clinică pentru purtătorii APOE4; cu toate acestea, va fi necesară o scară mai lungă și mai mare de încercări pentru a clarifica efectul apei H2 asupra MCI.

Curr Alzheimer Res . 15 (5): 482–492.
PMCID: PMC5872374
PMID: 29110615
Efectele hidrogenului molecular apreciate de un model animal și de un studiu clinic aleatoriu asupra tulburării cognitive ușoare
Kiyomi Nishimaki , 1 Takashi Asada , 2, 3, * Ikuroh Ohsawa , 1, 4 Etsuko Nakajima , 2 Chiaki Ikejima , 2Takashi Yokota , 1 Naomi Kamimura , 1 și Shigeo Ohta 1, 5, *

Date asociate

Materiale suplimentare

MULȚUMIRI

Mulțumim Blue Mercury, Inc. (Tokyo, Japonia) pentru furnizarea de apă H 2 și apă placebo, doamnei Hiroe Murakoshi pentru asistență tehnică și doamnei Suga Kato pentru lucrări de secretariat. Sprijinul financiar pentru acest studiu a fost oferit de Grants-in-Aid pentru Cercetări Științifice de la Societatea Japoneză pentru Promovarea Științei (23300257, 24651055 și 26282198 la SO; 23500971 și 25350907 către KN).Sprijinul financiar pentru acest studiu a fost oferit de Grants-in-Aid pentru Cercetări Științifice de la Societatea Japoneză pentru Promovarea Științei (23300257, 24651055 și 26282198 la SO; 23500971 și 25350907 către KN).

LISTA DE ABREVIERI

APOE4 Apolipoproteină E4
MCI Deficit cognitiv minor
ALDH2 Aldehidă Dehidrogenază 2
ADAS-Cog Evaluarea bolilor Alzheimer Scala-subscala cognitivă
ANUNȚ Boala Alzheimer
PD Boala Parkinson
DAL101 Tipul 101 dominant dominant al polimorfismului mutant ALDH2 (ALDH2 * 2)
4-HNE 4-hidroxi-2-nonenal
8-OHdG 8-hidroxi-2′-deoxiguanozină
MDA malondialdehidă
ORT Sarcina de recunoaștere a obiectelor
PA Sarcina de evitare pasivă
ACGP Proteină acidă fibrilă glială
PBS Salină tamponată cu fosfat
ANOVA Analiza unidirecțională a variației
CI Interval de încredere
MMSE Mini examen de stare mentală
FOV Câmp de vizualizare
APP Proteină precursoare amiloidă
Nrf2 Factorul 2 legat de NF-E2
NFAT Factorul nuclear al celulelor T activate

MATERIAL SUPLIMENTAR

Materialul suplimentar este disponibil pe site-ul web al editorului împreună cu articolul publicat.

APROBARE ETICĂ ȘI CONSENTIU DE PARTICIPARE

Studiul pe animale a fost aprobat de Comitetul de îngrijire și utilizare a animalelor de la Școala Medicală Nippon.

Protocolul de studiu clinic uman a fost aprobat de comitetele de etică ale Universității din Tsukuba.

DREPTURILE UMANE ȘI ANIMALE

Toate procedurile de cercetare a animalelor urmate au fost în conformitate cu standardele stabilite în cea de-a opta ediție a Ghidului pentru îngrijirea și utilizarea animalelor de laborator, publicată de Academia Națională de Științe, The National Academies Press, Washington, DC).

Toate materialele umane au fost obținute în conformitate cu standardele stabilite în principiile Declarației de la Helsinki din 1975, astfel cum a fost revizuit în 2008 ( http://www.wma.net/en/10ethics/10helsinki/<http://www.wma .net / en / 10ethics / 10helsinki / >).

Consimțământ pentru publicare

Toți pacienții au oferit consimțământ scris, cu prioritate, pentru investigațiile de cercetare.

CONFLICTUL DE INTERES

Declarăm că nu există un conflict de interese real și potențial pentru acest studiu. Deși SO a fost consilier științific al Blue Mercury, Inc. (Tokyo, Japonia) de la 2.005 la 2.008, nu a fost implicată în acest studiu.

REFERINȚE

1. Lin MT, Beal MF disfuncție mitocondrială și stres oxidativ în bolile neurodegenerative. Natură. 2006;443 : 787–795. PubMed ] Google Scholar ]
2. Mecocci P., Polidori MC Studii clinice cu antioxidanți în insuficiență cognitivă ușoară și boala Alzheimer. Biochim. Biophys. Acta. 2012; 1822 : 631–638. PubMed ] Google Scholar ]
3. Jofre-Monseny L., Minihane AM, Rimbach G. Impactul genotipului apoE asupra stresului oxidativ, a inflamației și a riscului de boală. Mol. Nutr. Produse alimentare 2008; 52 : 131-145. PubMed ] Google Scholar ]
4. Ohsawa I., Nishimaki K., Murakami Y., Suzuki Y., Ishikawa M., Ohta S. Neurodegenerare dependentă de vârstă care însoțește pierderea memoriei la șoarecii transgenici defecti în activitatea de aldehidă dehidrogenază mitocondrială 2. J. Neurosci. 2008; 28 : 6239–6249. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
5. Chen CH, Ferreira JC, ER Brut, Mochly-Rosen D. Direcția aldehide dehidrogenazei 2: noi oportunități terapeutice. Physiol. Rev. 2014; 94 : 1–34. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
6. Kamino K., Nagasaka K., Imagawa M., Yamamoto H., Yoneda H., Ueki A. și colab. Deficiența de aldehidă dehidrogenază mitocondrială crește riscul de boală Alzheimer cu debut tardiv la populația japoneză. Biochem. Biophys. Res. Commun. 2000; 273 : 192–196. PubMed ] Google Scholar ]
7. Jo SA, Kim EK, Park MH, Han C., Park HY, Jang Y. și colab. Un polimorfism Glu487Lys în gena pentru aldehida dehidrogenazei mitocondriale 2 este asociat cu infarct miocardic la bărbații coreeni în vârstă. Clin.Chim. Acta. 2007; 382 : 43–47. PubMed ] Google Scholar ]
8. Wang B., Wang J., Zhou S., Tan S., He X., Yang Z. și colab. Asocierea polimorfismului genei aldehidă dehidrogenază mitocondrială (ALDH2) cu susceptibilitatea la boala Alzheimer cu debut tardiv la chineză. J. Neurol. Sci. 2008; 268 : 172–175. PubMed ] Google Scholar ]
9. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., și colab. Hidrogenul acționează ca un antioxidant terapeutic prin reducerea selectivă a radicalilor de oxigen citotoxici. Nat. Med.2007; 13 : 688–94. PubMed ] Google Scholar ]
10. Ohta S. Hidrogenul molecular ca gaz medical preventiv și terapeutic: inițierea, dezvoltarea și potențialul medicamentului cu hidrogen. Pharmacol. Ther. 2014; 144 : 1–11. PubMed ] Google Scholar ]
11. Ichihara M., Sobue S., Ito M., Ito M., Hirayama M., Ohno K. Efecte biologice benefice și mecanismele de bază ale hidrogenului molecular – revizuire cuprinzătoare a 321 de articole originale. Med. Rez. Gaz2015; 5 : 12. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
12. Iketani M., Ohsawa I. Hidrogenul molecular ca agent neuroprotector. Curr. Neuropharmacol. 2017; 15 : 324–331. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
13. Ohta S. Hidrogenul molecular ca antioxidant nou: imagine de ansamblu asupra avantajelor hidrogenului pentru aplicații medicale. Metode Enzimol. 2015; 555 : 289–317. PubMed ] Google Scholar ]
14. Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S. Consumul de hidrogen molecular previne deficiențele provocate de stres în sarcinile de învățare dependente de hipocamp în timpul reținerii fizice cronice la șoareci. 2009. [ PubMed ]
15. Matsumoto A., Yamafuji M., Tachibana T., Nakabeppu Y., Noda M., Nakaya H. „Apa hidrogenică” orală induce secreție de ghrelină neuroprotectoare la șoareci. Sci. Rep. 2013; 3 : 3273.Articol gratuit PMC ] [ PubMed ] Google Scholar ]
16. Li J., Wang C., Zhang JH, Cai JM, Cao YP, Sun XJ Salină bogată în hidrogen îmbunătățește funcția de memorie într-un model de șobolan al bolii Alzheimer indusă de amiloid beta prin reducerea stresului oxidativ. Rez. Creier 2010; 1328 : 152–161. PubMed ] Google Scholar ]
17. Hayashida K., Sano M., Kamimura N., Yokota T., Suzuki M., Ohta S., și colab. Inhalarea de hidrogen în timpul resuscitării normoxice îmbunătățește rezultatul neurologic într-un model de șobolan de stop cardiac, independent de managementul temperaturii țintit. Circulaţie. 2014; 130 : 2173–2180. PubMed ] Google Scholar ]
18. Rosen WG, Mohs RC, Davis KL O nouă scală de rating pentru boala Alzheimer. A.m. J. Psihiatrie.1984; 141 : 1356–1364. PubMed ] Google Scholar ]
19. Connor DJ, Administrația Sabbagh MN și variația punctajului pe ADAS-Cog. J. Alzheimers Dis. 2008;15 : 461–464. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
20. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP Biomarkeri ai aplicațiilor de deteriorare a radicalilor liberi la animale experimentale și la om. Radica gratuită. Biol. Med. 1999; 26 : 202–226. PubMed ] Google Scholar ]
21. Kamimura N., Nishimaki K., Ohsawa I., Ohta S. Hidrogenul molecular îmbunătățește obezitatea și diabetul inducând FGF21 hepatic și stimulând metabolismul energetic la șoarecii db / db. Obezitate (Primăvara de Argint) 2011; 19 : 1396–1403. PubMed ] Google Scholar ]
22. O’Riordan KJ, Huang IC, Pizzi M., Spano P., Boroni F., Egli R., și colab. Reglarea factorului nuclear kappaB în hipocamp prin receptorii metabotropi ai glutamatului din grupa I. J. Neurosci. 2006; 26 : 4870–4879. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
23. Bun S., Ikejima C., Kida J., Yoshimura A., Lebowitz AJ, Kakuma T., și colab. O combinație de suplimente poate reduce riscul de boală Alzheimer la vârstnicii japonezi cu cunoștințe normale. J. Alzheimers Dis. 2015; 45 : 15–25. PubMed ] Google Scholar ]
24. Miyamoto M., Kodama C., Kinoshita T., Yamashita F., Hidaka S., Mizukami K., și colab. Demența și deficiența cognitivă ușoară în rândul celor care nu răspund la un sondaj comunitar. J. Clin. Neurosci. 2009;16 : 270–276. PubMed ] Google Scholar ]
25. Sasaki M., Kodama C., Hidaka S., Yamashita F., Kinoshita T., Nemoto K., și colab. Prevalența a patru subtipuri de deficiență cognitivă ușoară și APOE într-o comunitate japoneză. Int. J. Geriatr. Psihiatrie.2009; 24 : 1119–1126. PubMed ] Google Scholar ]
26. Arevalo-Rodriguez I., Smailagic N., Roque IFM, Ciapponi A., Sanchez-Perez E., Giannakou A., și colab. Mini-Mental State Examination (MMSE) pentru depistarea bolii Alzheimer și a altor demențe la persoanele cu deficiențe cognitive ușoare (MCI). Baza de date Cochrane Syst. Rev. 2015; 3 : CD010783.Articol gratuit PMC ] [ PubMed ] Google Scholar ]
27. Ihl R., Ferris S., Robert P., Winblad B., Gauthier S., Tennigkeit F. Detectarea efectelor tratamentului cu combinații ale articolelor ADAS-cog la pacienții cu boală Alzheimer ușoară și moderată. Int. J. Geriatr.Psihiatrie. 2012; 27 : 15–21. PubMed ] Google Scholar ]
28. Karin A., Hannesdottir K., Jaeger J., Annas P., Segerdahl M., Karlsson P., și colab. Evaluarea psihometrică a ADAS-Cog și NTB pentru măsurarea răspunsului la medicamente. Acta Neurol. Scand.2014; 129 : 114–122. PubMed ] Google Scholar ]
29. Schneider C., Tallman KA, Porter NA, Brash AR Două căi distincte de formare a 4-hidroxynonenalului. Mecanisme de transformare nonenzimatică a 9- și 13-hidroperoxidelor acidului linoleic în 4-hidroxialkenale. J. Biol. Chem. 2001; 276 : 20831–20838. PubMed ] Google Scholar ]
30. Csala M., Kardon T., Legeza B., Lizak B., Mandl J., Margittai E., și colab. Cu privire la rolul 4-hidroxynonenal în sănătate și boli. Biochim. Biophys. Acta. 2015; 1852 : 826–838. PubMed ] Google Scholar ]
31. Endo J., Sano M., Katayama T., Hishiki T., Shinmura K., Morizane S., și colab. Remodelarea metabolică indusă de stresul aldehidelor mitocondriale stimulează toleranța la stresul oxidativ din inimă. Circ. Res. 2009; 105 : 1118–1127. PubMed ] Google Scholar ]
32. Kanamaru T., Kamimura N., Yokota T., Iuchi K., Nishimaki K., Takami S., și colab. Stresul oxidativ accelerează depunerea amiloidului și afectarea memoriei într-un model de mouse dublu transgenic al bolii Alzheimer. Neurosci. Lett. 2015; 587 : 126–131. PubMed ] Google Scholar ]
33. Nakashima Y., Ohsawa I., Konishi F., Hasegawa T., Kumamoto S., Suzuki Y. și colab. Efectele preventive ale Chlorella asupra declinului cognitiv la șoarecii cu model de demență dependentă de vârstă.Neurosci. Lett. 2009; 464 : 193–198. PubMed ] Google Scholar ]
34. De Marco M., Vallelunga A., Meneghello F., Varma S., Frangi AF, Venneri A. ApoE epsilon4 alele modificări ale conectivității hipocampale în boala Alzheimer timpurie susțin performanța memoriei. Curr.Alzheimer Res. 2017; 14 : 766–777. PubMed ] Google Scholar ]
35. Shackleton B., Crawford F., Bachmeier C. Apolipoproteină Modularea mediată de E a ADAM10 în boala Alzheimer. Curr. Alzheimer Res. 2017; 14 : 578–585. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
36. Hanson AJ, Craft S., Banks WA Genotipul APOE: modificarea răspunsurilor terapeutice în boala Alzheimer. Curr. Pharm. Des. 2015; 21 : 114–120. PubMed ] Google Scholar ]
37. Johnson DA, Johnson JA Nrf2-o țintă terapeutică pentru tratamentul bolilor neurodegenerative. Radica gratuită. Biol. Med. 2015; 88 : 253–267. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
38. Ohsawa I., Nishimaki K., Yamagata K., Ishikawa M., Ohta S. Consumul de apă cu hidrogen previne ateroscleroza la șoarecii de apolipoproteină E. Biochem. Biophys. Res. Commun. 2008; 377 : 1195–1198. PubMed ] Google Scholar ]
39. Maloney B., Ge YW, Petersen RC, Hardy J., Rogers JT, Perez-Tur J., și colab. Caracterizarea funcțională a trei polimorfisme cu un singur nucleotid prezent în secvența promotorului APOE uman: Efecte diferențiale în celulele neuronale și asupra interacțiunilor ADN-proteine. A.m. J. Med. Genet. B. Neuropsihiatrul. Genet. 2010; 153b : 185-201. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
40. Uemura K., Doi T., Shimada H., Makizako H., Yoshida D., Tsutsumimoto K., și colab. Efectele intervenției exercițiului asupra factorilor de risc vascular la adulții vârstnici cu insuficiență cognitivă ușoară: un studiu controlat randomizat. Dement. Geriatr. Cogn. Dizord. Suplimentar. 2012; 2 : 445–455.Articol gratuit PMC ] [ PubMed ] Google Scholar ]
41. Gates N., Fiatarone Singh MA, Sachdev PS, Valenzuela M. Efectul antrenamentului de exerciții asupra funcției cognitive la adulții vârstnici cu deficiență cognitivă ușoară: o meta-analiză a studiilor controlate randomizate. A.m. J. Geriatr. Psihiatrie. 2013; 21 : 1086–1097. PubMed ] Google Scholar ]
42. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Ito K., și colab. Un studiu controlat randomizat al exercițiului multicomponent la adulți mai în vârstă cu deficiență cognitivă ușoară. Plus unu.2013; 8 : e61483. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
43. NA inteligentă, Steele M. Efectul pregătirii fizice asupra expresiei citochininei proinflamatorii sistemice la pacienții cu insuficiență cardiacă: o revizuire sistematică. Congestiona. Insuficiență cardiacă.2011; 17 : 110–114. PubMed ] Google Scholar ]
44. Cooper C., Li R., Lyketsos C., Livingston G. Tratament pentru tulburări cognitive ușoare: revizuire sistematică. Br. J. Psihiatrie. 2013; 203 : 255–264. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
45. Lavie CJ, Arena R., Swift DL, Johannsen NM, Sui X., Lee DC și colab. Exercitiile si sistemul cardiovascular: stiinta clinica si rezultatele cardiovasculare. Circ. Res. 2015; 117 : 207–219.Articol gratuit PMC ] [ PubMed ] Google Scholar ]
46. Buchholz BM, Kaczorowski DJ, Sugimoto R., Yang R., Wang Y., Billiar TR, și colab. Inhalarea de hidrogen ameliorează stresul oxidativ în vătămarea grefelor intestinale induse de transplant. A.m. J. Transplant. 2008; 8 : 2015–2024. PubMed ] Google Scholar ]
47. Iuchi K., Imoto A., Kamimura N., Nishimaki K., Ichimiya H., Yokota T., și colab. Hidrogenul molecular reglează expresia genelor prin modificarea generației dependente de reacția în lanț a radicalilor liberi de mediatori fosfolipide oxidate. Sci. Rep. 2016; 6 : 18971. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
48. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM și colab. Declinul cognitiv al bolii Alzheimer este asociat cu modificări selective în semnalizarea calcineurinei / NFAT. J. Neurosci.2009; 29 : 12957–12969. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
49. Hudry E., Wu HY, Arbel-Ornath M., Hashimoto T., Matsouaka R., Fan Z. și colab. Inhibarea căii NFAT atenuează neurotoxicitatea beta amiloidă la un model de șoarece al bolii Alzheimer. J. Neurosci. 2012; 32 : 3176–3192. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
50. Luo J., Sun L., Lin X., Liu G., Yu J., Parisiadou L., și colab. O cale dependentă de calcineurină și NFAT este implicată în degenerarea indusă de alfa-sinucleină a neuronilor dopaminergici din creierul mijlociu. Zumzet. Mol. Genet. 2014; 23 : 6567–6574. Articol gratuit PMC ] [ PubMed ] Google Scholar ]
51. Yoritaka A., Takanashi M., Hirayama M., Nakahara T., Ohta S., Hattori N. Studiul pilot al terapiei cu H (2) în boala Parkinson: un studiu randomizat controlat cu placebo dublu-orb. Mov. Dizord. 2013; 28 : 836–839. PubMed ] Google Scholar ]
52. Yoritaka A., Abe T., Ohtsuka C., Maeda T., Hirayama M., Watanabe H., și colab. Un studiu randomizat dublu-orb multi-centru de apă cu hidrogen pentru boala Parkinson: protocol și caracteristici de bază. Neurol BMC. 2016; 16 : 66. Articol gratuit PMC ] [ PubMed ] Google Scholar ]

Lasă un răspuns

Adresa ta de email nu va fi publicată. Câmpurile obligatorii sunt marcate cu *

Acest sit folosește Akismet pentru a reduce spamul. Află cum sunt procesate datele comentariilor tale.