Tag Archives: acqua idrogenata

Safety & Health Benefits of Hydrogen Water – Nobel Prize Nominee, Dr. GARTH NICOLSON

Safety & Health Benefits of Hydrogen Water – Nobel Prize Nominee, Dr. GARTH NICOLSON

Molecular Hydrogen CANCER treatment

Gas signaling molecules (GSMs), composed of oxygen, carbon monoxide, nitric oxide, hydrogen sulfide, etc., play critical roles in regulating signal transduction and cellular homeostasis. Interestingly, through various administrations, these molecules also exhibit potential in cancer treatment. Recently, hydrogen gas (formula: H2) emerges as another GSM which possesses multiple bioactivities, including anti-inflammation, anti-reactive oxygen species, and anti-cancer. Growing evidence has shown that hydrogen gas can either alleviate the side effects caused by conventional chemotherapeutics, or suppress the growth of cancer cells and xenograft tumor, suggesting its broad potent application in clinical therapy. In the current review, we summarize these studies and discuss the underlying mechanisms. The application of hydrogen gas in cancer treatment is still in its nascent stage, further mechanistic study and the development of portable instruments are warranted.

Introduction

Gaseous signaling molecules (GSMs) refer to a group of gaseous molecules, such as oxygen (1), nitric oxide (2), carbon monoxide (3), hydrogen sulfide (4), sulfur dioxide (56), ethylene (78), etc. These gaseous molecules possess multiple critical functions in regulating cell biology in vivo via signal transduction (9). More importantly, certain GSMs could serve as therapeutic agents in primary cancer, as well as in multidrug-resistant cancer treatment when used by directly or certain pharmaceutical formulations (913). In addition, some of these GSMs can be generated in body via different bacteria or enzymes, such as nitric oxide, hydrogen sulfide, indicating that they are more compatible molecules that may exhibit less adverse effects compared with conventional chemotherapeutics (91415). Recently, hydrogen gas has been recognized as another important GSM in biology, exhibiting appealing potential in health care for its role in preventing cell injury from various attacking (1619).

With the formula of H2, hydrogen gas is the lightest molecule in the nature which only accounts for about 0.5 parts per million (ppm) of all the gas. Naturally, hydrogen gas is a colorless, odorless, tasteless, non-toxic, highly combustible gas which may form explosive mixtures with air in concentrations from 4 to 74% that can be triggered by spark, heat, or sunlight. Hydrogen gas can be generated in small amount by hydrogenase of certain members of the human gastrointestinal tract microbiota from unabsorbed carbohydrates in the intestine through degradation and metabolism (2021), which then is partially diffused into blood flow and released and detected in exhaled breath (20), indicating its potential to serve as a biomarker.

As the lightest molecule in natural, hydrogen gas exhibits appealing penetration property, as it can rapidly diffuse through cell membranes (2223). Study in animal model showed that, after orally administration of hydrogen super-rich water (HSRW) and intra-peritoneal administration of hydrogen super-rich saline (HSRS), the hydrogen concentration reached the peak at 5 min; while it took 1 min by intravenous administration of HSRS (23). Another in vivo study tested the distribution of hydrogen in brain, liver, kidney, mesentery fat, and thigh muscle in rat upon inhalation of 3% hydrogen gas (24). The concentration order of hydrogen gas, when reached saturated status, was liver, brain, mesentery, muscle, kidney, indicating various distributions among organs in rats. Except the thigh muscle required a longer time to saturate, the other organs need 5–10 min to reach Cmax (maximum hydrogen concentration). Meanwhile, the liver had the highest Cmax (24). The information may direct the future clinical application of hydrogen gas.

Although hydrogen gas was studied as a therapy in a skin squamous carcinoma mouse model back in 1975 (25), its potential in medical application has not been vastly explored until 2007, when Oshawa et al. reported that hydrogen could ameliorate cerebral ischemia-reperfusion injury by selectively reducing cytotoxic reactive oxygen species (ROS), including hydroxyl radical (•OH) and peroxynitrite (ONOO-) (26), which then provoked a worldwide attention. Upon various administrative formulations, hydrogen gas has been served as a therapeutic agent for a variety of illnesses, such as Parkinson’s disease (2728), rheumatoid arthritis (29), brain injury (30), ischemic reperfusion injury (3132), and diabetes (3334), etc.

More importantly, hydrogen has been shown to improve clinical end-points and surrogate markers, from metabolic diseases to chronic systemic inflammatory disorders to cancer (17). A clinical study in 2016 showed that inhalation of hydrogen gas was safe in patients with post-cardiac arrest syndrome (35), its further therapeutic application in other diseases became even more appealing.

In the current review, we take a spot on its application in cancer treatment. Typically, hydrogen gas may exert its bio-functions via regulating ROS, inflammation and apoptosis events.

Hydrogen Gas Selectively Scavenges Hydroxyl Radical and Peroxynitrite, and Regulates Certain Antioxidant Enzymes

By far, many studies have indicated that hydrogen gas doesn’t target specific proteins, but regulate several key players in cancer, including ROS, and certain antioxidant enzymes (36).

ROS refers to a series of unstable molecules that contain oxygen, including singlet oxygen (O2•), hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•O2-), nitric oxide (NO•), and peroxynitrite (ONOO), etc. (3738). Once generated in vivo, due to their high reactivity, ROS may attack proteins, DNA/RNA and lipids in cells, eliciting distinct damage that may lead to apoptosis. The presence of ROS can produce cellular stress and damage that may produce cell death, via a mechanism known as oxidative stress (3940). Normally, under physical condition, cells including cancer cells maintain a balance between generation and elimination of ROS, which is of paramount importance for their survival (4142). The over-produced ROS, resulted from imbalance regulatory system or outer chemical attack (including chemotherapy/radiotherapy), may initiate inner apoptosis cascade, causing severely toxic effects (4345).

Hydrogen gas may act as a ROS modulator. First, as shown in Ohsawa et al.’s study, hydrogen gas could selectively scavenge the most cytotoxic ROS, •OH, as tested in an acute rat model of cerebral ischemia and reperfusion (26). Another study also confirmed that hydrogen gas might reduce the oxygen toxicity resulted from hyperbaric oxygen via effectively reducing •OH (46).

Second, hydrogen may induce the expression of some antioxidant enzymes that can eliminate ROS, and it plays key roles in regulating redox homeostasis of cancer cells (4247). Studies have indicated that upon hydrogen gas treatment, the expression of superoxide dismutase (SOD) (48), heme oxyganase-1 (HO-1) (49), as well as nuclear factor erythroid 2-related factor 2 (Nrf2) (50), increased significantly, strengthening its potential in eliminating ROS.

By regulating ROS, hydrogen gas may act as an adjuvant regimen to reduce the adverse effects in cancer treatment while at the same time doesn’t abrogate the cytotoxicity of other therapy, such as radiotherapy and chemotherapy (4851). Interestingly, due the over-produced ROS in cancer cells (38), the administration of hydrogen gas may lower the ROS level at the beginning, but it provokes much more ROS production as a result of compensation effect, leading to the killing of cancer cells (52).

Hydrogen Gas Suppresses Inflammatory Cytokines

Inflammatory cytokines are a series of signal molecules that mediate the innate immune response, whose dys-regulation may contribute in many diseases, including cancer (5355). Typical inflammatory cytokines include interleukins (ILs) excreted by white blood cells, tumor necrosis factors (TNFs) excreted by macrophages, both of which have shown close linkage to cancer initiation and progression (5659), and both of ILs and TNFs can be suppressed by hydrogen gas (6061).

Inflammation induced by chemotherapy in cancer patients not only causes severely adverse effects (6263), but also leads to cancer metastasis, and treatment failure (6465). By regulating inflammation, hydrogen gas can prevent tumor formation, progression, as well as reduce the side effects caused by chemotherapy/radiotherapy (66).

Hydrogen Gas Inhibits/Induces Apoptosis

Apoptosis, also termed as programed cell death, can be triggered by extrinsic or intrinsic signals and executed by different molecular pathways, which serve as one efficient strategy for cancer treatment (6768). Generally, apoptosis can be induced by (1) provoking the death receptors of cell surface (such as Fas, TNF receptors, or TNF-related apoptosis-inducing ligand), (2) suppressing the survival signaling (such as epidermal growth factor receptor, mitogen-activated protein kinase, or phosphoinositide 3-kinases), and (3) activating the pro-apoptotic B-cell lymphoma-2 (Bcl-2) family proteins, or down-regulating anti-apoptosis proteins (such as X-linked inhibitor of apoptosis protein, surviving, and the inhibitor of apoptosis) (6970).

Hydrogen gas can regulate intracellular apoptosis by impacting the expression of apoptosis-related enzymes. At certain concentration, it can either serve as apoptosis-inhibiting agent via inhibiting the pro-apoptotic B-cell lymphoma-2-associated X protein (Bax), caspase-3, 8, 12, and enhancing the anti-apoptotic B-cell lymphoma-2 (Bcl-2) (71), or as apoptosis-inducing agent via the contrast mechanisms (72), suggesting its potential in protecting normal cells from anti-cancer drugs or in suppressing cancer cells.

Hydrogen Gas Exhibits Potential in Cancer Treatment

Hydrogen Gas Relieves the Adverse Effects Related to Chemotherapy/Radiotherapy

Chemotherapy and radiotherapy remain the leading strategies to treat cancer (7374). However, cancer patients receiving these treatments often experience fatigue and impaired quality of life (7577). The skyrocketed generation of ROS during the treatment is believed to contribute in the adverse effects, resulting in remarkable oxidative stress, and inflammation (414278). Therefore, benefited from its anti-oxidant and anti-inflammatory and other cell protective properties, hydrogen gas can be adopted as an adjuvant therapeutic regimen to suppress these adverse effects.

Under treatment of epidermal growth factor receptor inhibitor gefitinib, patients with non-small cell lung cancer often suffer with severe acute interstitial pneumonia (79). In a mice model treated with oral administration of gefitinib and intraperitoneal injection of naphthalene which induced severely lung injury due to oxidative stress, hydrogen-rich water treatment significantly reduced the inflammatory cytokines, such as IL-6 and TNFα in the bronchoalveolar lavage fluid, leading to a relieve of lung inflammation. More importantly, hydrogen-rich water didn’t impair the overall anti-tumor effects of gefitinib both in vitro and in vivo, while in contrast, it antagonized the weight loss induced by gefitinib and naphthalene, and enhanced the overall survival rate, suggesting hydrogen gas to be a promising adjuvant agent that has potential to be applied in clinical practice to improve quality of life of cancer patients (80).

Doxorubicin, an anthracycline antibiotic, is an effective anticancer agent in the treatment of various cancers, but its application is limited for the fatal dilated cardiomyopathy and hepatotoxicity (8182). One in vivo study showed that intraperitoneal injection of hydrogen-rich saline ameliorated the mortality, and cardiac dysfunction caused by doxorubicin. This treatment also attenuated histopathological changes in serum of rats, such as the serum brain natriuretic peptide (BNP), aspartate transaminase (AST), alanine transaminase (ALT), albumin and malondialdehyde (MDA) levels. Mechanistically, hydrogen-rich saline significantly lowered the ROS level, as well as inflammatory cytokines TNF-α, IL-1β, and IL-6 in cardiac and hepatic tissue. Hydrogen-rich saline also induced less expression of apoptotic Bax, cleaved caspase-3, and higher anti-apoptotic Bcl-2, resulting in less apoptosis in both tissues (71). This study suggested that hydrogen-rich saline treatment exerted its protective effects via inhibiting the inflammatory TNF-α/IL-6 pathway, increasing the cleaved C8 expression and Bcl-2/Bax ratio, and attenuating cell apoptosis in both heart and liver tissue (71).

Hydrogen-rich water also showed renal protective effect against cisplatin-induced nephrotoxicity in rats. In the studies, blood oxygenation level-dependent (BOLD) contrast magnetic resonance images (MRI) acquired in different treated group showed that the creatinine and blood urea nitrogen (BUN) levels, two parameters that related to nephrotoxicity, were significantly higher in cisplatin treated group than those in the control group. Hydrogen-rich water treatment could significantly reverse the toxic effects, and it showed much higher transverse relaxation rate by eliminating oxygen radicals (8384).

Another study showed that both inhaling hydrogen gas (1% hydrogen in air) and drinking hydrogen-rich water (0.8 mM hydrogen in water) could reverse the mortality, and body-weight loss caused by cisplatin via its anti-oxidant property. Both treatments improved the metamorphosis, accompanied with decreased apoptosis in the kidney, and nephrotoxicity as assessed by serum creatinine and BUN levels. More importantly, hydrogen didn’t impair the anti-tumor activity of cisplatin against cancer cell lines in vitro and in tumor-bearing mice (85). Similar results were also observed in Meng et al.’s study, as they showed that hydrogen-rich saline could attenuate the follicle-stimulating hormone release, elevate the level of estrogen, improve the development of follicles, and reduce the damage to the ovarian cortex induced by cisplatin. In the study, cisplatin treatment induced higher level of oxidation products, suppressed the antioxidant enzyme activity. The hydrogen-rich saline administration could reverse these toxic effects by reducing MDA and restoring the activity of superoxide dismutase (SOD), catalase (CAT), two important anti-oxidant enzymes. Furthermore, hydrogen-rich saline stimulated the Nrf2 pathway in rats with ovarian damage (86).

The mFOLFOX6 regimen, composed with folinic acid, 5-fluorouracil, and oxaliplatin, is used as first-line treatment for metastatic colorectal cancer, but it also confers toxic effects to liver, leading to bad quality of life of patient (8788). A clinical study was conducted in China by investing the protective effect of hydrogen-rich water on hepatic function of colorectal cancer patients (144 patients were enrolled and 136 of them were include in the final analysis) treated with mFOLFOX6 chemotherapy. The results showed that the placebo group exhibited damaging effects caused by mFOLFOX6 chemotherapy as measured by the elevated levels of ALT, AST and indirect bilirubin (IBIL), while the hydrogen-rich water combinational treatment group exhibited no differences in liver function during the treatment, probably due to its antioxidant activity, indicating it a promising protective agent to alleviate the mFOLFOX6-related liver injury (51).

Most of the ionizing radiation-induced adverse effects to normal cells are induced by hydroxyl radicals. The combination of radiotherapy with certain forms of hydrogen gas may be beneficial to alleviate these side effects (89). Indeed, several studies found that hydrogen could protect cells and mice from radiation (4890).

As tested in a rat model of skin damage established by using a 44 Gy electronic beam, the treated group by hydrogen-rich water exhibited higher lever of SOD activity and lower MDA and IL-6 in the wounded tissues than the control group and the distilled water group. Furthermore, hydrogen-rich water shortened the healing time and increased the healing rate of skin injury (48).

Gastrointestinal toxicity is a common side effect induced by radiotherapy, which impairs the life quality of cancer patients (91). As shown in Xiao et al.’s study in mice model, hydrogen-water administration via oral gavage increased the survival rate and body weight of mice which were exposed to total abdominal irradiation, accompanied with an improvement in gastrointestinal tract function and the epithelial integrity of the small intestine. Further microarray analysis revealed that hydrogen-water treatment up-regulated miR-1968-5p, which then up-regulated its target myeloid differentiation primary response gene 88 (MyD88, a mediator in immunopathology, and gut microbiota dynamics of certain intestinal diseases involving toll-like receptors 9) expression in the small intestine after total abdominal irradiation (92).

Another study conducted in clinical patients with malignant liver tumors showed that the consumption of hydrogen-rich water for 6 weeks reduced the level of reactive oxygen metabolite, hydroperoxide, and maintained the biologic antioxidant activity in the blood. Importantly, scores of quality of life during radiotherapy were significantly improved in hydrogen-rich water group compared to the placebo water group. Both groups exhibited similar tumor response to radiotherapy, indicating that the consumption of hydrogen-rich water reduced the radiation-induced oxidative stress while at the same time didn’t compromise anti-tumor effect of radiotherapy (93).

Hydrogen Gas Acts Synergistically With Thermal Therapy

Recently, one study found that hydrogen might enhance the effect of photothermal therapy. Zhao et al. designed the hydrogenated Pd nanocrystals (named as PdH0.2) as multifunctional hydrogen carrier to allow the tumor-targeted delivery (due to 30 nm cubic Pd nanocrystal) and controlled release of bio-reductive hydrogen (due to the hydrogen incorporated into the lattice of Pd). As shown in this study, hydrogen release could be adjusted by the power and duration of near-infrared (NIR) irradiation. Treatment of PdH0.2 nanocrystals plus NIR irradiation lead to higher initial ROS loss in cancer cells, and the subsequent ROS rebound was also much higher than that in normal cells, resulting in more apoptosis, and severely mitochondrial metabolism inhibition in cancer cells but not in normal cells. The combination of PdH0.2 nanocrystals with NIR irradiation significantly enhanced the anticancer efficacies of thermal therapy, achieving a synergetic anticancer effect. In vivo safety evaluation showed that the injection dose of 10 mg kg−1 PdH0.2 nanocrystals caused no death, no changes of several blood indicators, and no affected functions of liver and kidney. In 4T1 murine breast cancer tumor model and B16-F10 melanoma tumor model, the combined PdH0.2 nanocrystals and NIR irradiation therapy exhibited a synergetic anticancer effect, leading to remarkable tumor inhibition when compared with thermal therapy. Meanwhile, the combination group showed no visible damage to heart, liver, spleen, lung, and kidney, indicating suitable tissue safety and compatibility (52).

Hydrogen Gas Suppresses Tumor Formation

Li et al. reported that the consumption of hydrogen-rich water alleviated renal injury caused by Ferric nitrilotriacetate (Fe-NTA) in rats, evidenced by decreased levels of serum creatinine and BUN. Hydrogen-rich water suppressed the Fe-NTA-induced oxidative stress by lowering lipid peroxidation, ONOO, and inhibiting the activities of NADPH oxidase and xanthine oxidase, as well as by up-regulating antioxidant catalase, and restoring mitochondrial function in kidneys. Consequently, Fe-NTA-induced inflammatory cytokines, such as NF-κB, IL-6, and monocyte chemoattractant protein-1 were significantly alleviated by hydrogen treatment. More importantly, hydrogen-rich water consumption inhibited several cancer-related proteins expression, including vascular endothelial growth factor (VEGF), signal transducer and activator of transcription 3 (STAT3) phosphorylation, and proliferating cell nuclear antigen (PCNA) in rats, resulting in lower incidence of renal cell carcinoma and the suppression of tumor growth. This work suggested that hydrogen-rich water was a promising regimen to attenuate Fe-NTA-induced renal injury and suppress early tumor events (66).

Non-alcoholic steatohepatitis (NASH) due to oxidative stress induced by various stimuli, is one of the reasons that cause hepatocarcinogenesis (9495). In a mouse model, hydrogen-rich water administration lowered the hepatic cholesterol, peroxisome proliferator-activated receptor-α (PPARα) expression, and increased the anti-oxidative effects in the liver when compared with control and pioglitazone treated group (96). Hydrogen-rich water exhibited strong inhibitory effects to inflammatory cytokines TNF-α and IL-6, oxidative stress and apoptosis biomarker. As shown in NASH-related hepatocarcinogenesis model, in the group of hydrogen-rich water treatment, tumor incidence was lower and the tumor volumes were smaller than control and pioglitazone treated group. The above findings indicated that hydrogen-rich water had potential in liver protection and liver cancer treatment (96).

Hydrogen Gas Suppresses Tumor Growth

Not only working as an adjuvant therapy, hydrogen gas can also suppress tumor and tumor cells growth.

As shown in Wang et al.’s study, on lung cancer cell lines A549 and H1975 cells, hydrogen gas inhibited the cell proliferation, migration, and invasion, and induced remarkable apoptosis as tested by CCK-8, wound healing, transwell assays and flow cytometry. Hydrogen gas arrested the cell cycle at G2/M stage on both cell lines via inhibiting the expression of several cell cycle regulating proteins, including Cyclin D1, CDK4, and CDK6. Chromosomes 3 (SMC3), a complex required for chromosome cohesion during the cell cycle (97), was suppressed by hydrogen gas via ubiquitinating effects. Importantly, in vivo study showed that under hydrogen gas treatment, tumor growth was significantly inhibited, as well as the expression of Ki-67, VEGF and SMC3. These data suggested that hydrogen gas could serve as a new method for the treatment of lung cancer (98).

Due to its physicochemical characteristics, the use of hydrogen gas has been strictly limited in hospital and medical facilities and laboratories. Li et al. designed a solidified hydrogen-occluding-silica (H2-silica) that could stably release molecular hydrogen into cell culture medium. H2-silica could concentration-dependently inhibit the cell viability of human esophageal squamous cell carcinoma (KYSE-70) cells, while it need higher dose to suppress normal human esophageal epithelial cells (HEEpiCs), indicating its selective profile. This effect was further confirmed by apoptosis and cell migration assay in these two cell lines. Mechanistic study revealed that H2-silica exerted its anticancer via inducing H2O2 accumulation, cell cycle arrest, and apoptosis induction mediated by mitochondrial apoptotic pathways (72).

Recently, hydrogen gas was found to inhibit cancer stem cells (CSCs). Hydrogen gas reduced the colony formation and sphere formation of human ovarian cancer cell lines Hs38.T and PA-1 cells via inhibiting the proliferation marker Ki67, stem cell markers CD34, and angiogenesis. Hydrogen gas treatment significantly inhibited the proliferation, invasion, migration of both Hs38.T and PA-1 cells. More important, inhalation of hydrogen gas inhibited the tumor volume significantly as shown in the Hs38.T xenografted BALB/c nude mice model (99).

Another recent study also confirmed the effects of hydrogen gas in suppressing glioblastoma (GBM), the most common malignant brain tumor. In vitro study indicated that hydrogen gas inhibited several markers involved in stemness, resulting in the suppression of sphere formation, cell migration, invasion, and colony formation of glioma cells. By inhaling hydrogen gas (67%) 1 h, 2 times per day, the GBM growth was significantly inhibited, and the survival rate was improved in a rat orthotopic glioma model, suggesting that hydrogen might be a promising agent in the treatment of GBM (100).

Discussion

Hydrogen gas has been recognized as one medical gas that has potential in the treatment of cardiovascular disease, inflammatory disease, neurodegenerative disorders, and cancer (1760). As a hydroxyl radical and peroxynitrite scavenger, and due to its anti-inflammatory effects, hydrogen gas may work to prevent/relieve the adverse effects caused by chemotherapy and radiotherapy without compromise their anti-cancer potential (as summarized in Table 1 and Figure 1). Hydrogen gas may also work alone or synergistically with other therapy to suppress tumor growth via inducing apoptosis, inhibiting CSCs-related and cell cycle-related factors, etc. (summarized in Table 1).

TABLE 1

www.frontiersin.orgTable 1. The Summary of various formulation, application, mechanisms of H2 in cancer treatment.

FIGURE 1

www.frontiersin.orgFigure 1. Hydrogen in cancer treatment.

More importantly, in most of the research, hydrogen gas has demonstrated safety profile and certain selectivity property to cancer cells over normal cells, which is quite pivotal to clinical trials. One clinical trials (NCT03818347) is now undergoing to study the hydrogen gas in cancer rehabilitation in China.

By far, several delivery methods have proved to be available and convenient, including inhalation, drinking hydrogen-dissolved water, injection with hydrogen-saturated saline and taking a hydrogen bath (101). Hydrogen-rich water is non-toxic, inexpensive, easily administered, and can readily diffuse into tissues and cells (102), cross the blood-brain barrier (103), suggesting its potential in the treatment of brain tumor. Further portable devices that are well-designed and safe enough will be needed.

However, regarding its medicinal properties, such as dosage and administration, or possible adverse reactions and use in specific populations, less information is available. Its mechanism, target, indications are also not clear, further study are warranted.

NOTE:

Molecular hydrogen-rich water generally shows a more prominent effect than molecular hydrogen gas, although the amount of hydrogen taken up by hydrogen water is ~100 times less than that given by hydrogen gas [11].

We have showed that drinking molecular hydrogen water, but not continuous molecular hydrogen gas exposure, prevented development of 6-hydorxydopamine-induced Parkinson’s disease in rats [11].

https://water-ionizers.info/en/2017/09/05/modalities-of-molecular-hydrogen-administrationin-water-gas-or-saline-to-animals-humans-and-plants/

 

SEE ALL WATER IONIZERS – MOLECULAR HYDROGEN GENERATORS

REVIEW ARTICLE

Front. Oncol., 06 August 2019 | https://doi.org/10.3389/fonc.2019.00696

Hydrogen Gas in Cancer Treatment
Sai Li1Rongrong Liao2Xiaoyan Sheng2Xiaojun Luo3Xin Zhang1Xiaomin Wen3Jin Zhou2* and Kang Peng1,3*
  • 1Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
  • 2Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
  • 3The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China

Author Contributions

SL, XW, JZ, and KP: conceptualization. SL, RL, XS, XL, XZ, JZ, and KP: writing. SL, RL, and XS: revising.

Funding

This work was supported in part by grants from the Natural Science Foundation of Guangdong Province (2018A030313987) and Traditional Chinese Medicine Bureau of Guangdong Province (20164015 and 20183009) and Science and Technology Planning Project of Guangdong Province (2016ZC0059).

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We thank Miss Ryma Iftikhar, Dhiviya Samuel, Mahnoor Shamsi (St. John’s University), and Mr. Muaz Sadeia for editing and revising the manuscript.

References

1. De Bels D, Corazza F, Germonpre P, Balestra C. The normobaric oxygen paradox: a novel way to administer oxygen as an adjuvant treatment for cancer? Med Hypotheses. (2011) 76:467–70. doi: 10.1016/j.mehy.2010.11.022

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: past, present, and future. Med Res Rev. (2018) 38:1159–87. doi: 10.1002/med.21461

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Vitek L, Gbelcova H, Muchova L, Vanova K, Zelenka J, Konickova R, et al. Antiproliferative effects of carbon monoxide on pancreatic cancer. Dig Liver Dis. (2014) 46:369–75. doi: 10.1016/j.dld.2013.12.007

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Flannigan KL, Wallace JL. Hydrogen sulfide-based anti-inflammatory and chemopreventive therapies: an experimental approach. Curr Pharm Des. (2015) 21:3012–22. doi: 10.2174/1381612821666150514105413

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Li Z, Huang Y, Du J, Liu AD, Tang C, Qi Y, et al. Endogenous sulfur dioxide inhibits vascular calcification in association with the TGF-beta/Smad signaling pathway. Int J Mol Sci. (2016) 17:266. doi: 10.3390/ijms17030266

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Jin H, Liu AD, Holmberg L, Zhao M, Chen S, Yang J, et al. The role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rats with isopropylarterenol-induced myocardial injury. Int J Mol Sci. (2013) 14:10465–82. doi: 10.3390/ijms140510465

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Jiroutova P, Oklestkova J, Strnad M. Crosstalk between brassinosteroids and ethylene during plant growth and under abiotic stress conditions. Int J Mol Sci. (2018) 19:3283. doi: 10.3390/ijms19103283

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Paardekooper LM, van den Bogaart G, Kox M, Dingjan I, Neerincx AH, Bendix MB, et al. Ethylene, an early marker of systemic inflammation in humans. Sci Rep. (2017) 7:6889. doi: 10.1038/s41598-017-05930-9

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Cui Q, Yang Y, Ji N, Wang JQ, Ren L, Yang DH, et al. Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem. (2019) 11:323–6. doi: 10.4155/fmc-2018-0403

CrossRef Full Text | Google Scholar

10. Huang Z, Fu J, Zhang Y. Nitric oxide donor-based cancer therapy: advances and prospects. J Med Chem. (2017) 60:7617–35. doi: 10.1021/acs.jmedchem.6b01672

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Ma Y, Yan Z, Deng X, Guo J, Hu J, Yu Y, et al. Anticancer effect of exogenous hydrogen sulfide in cisplatinresistant A549/DDP cells. Oncol Rep. (2018) 39:2969–77. doi: 10.3892/or.2018.6362

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Zheng DW, Li B, Li CX, Xu L, Fan JX, Lei Q, et al. Photocatalyzing CO2 to CO for enhanced cancer therapy. Adv Mater. (2017) 29:1703822. doi: 10.1002/adma.201703822

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Chen J, Luo H, Liu Y, Zhang W, Li H, Luo T, et al. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. Acs Nano. (2017) 11:12849–62. doi: 10.1021/acsnano.7b08225

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Stuehr DJ, Vasquez-Vivar J. Nitric oxide synthases-from genes to function. Nitric Oxide. (2017) 63:29. doi: 10.1016/j.niox.2017.01.005

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. (2018) 31:1–38. doi: 10.1089/ars.2017.7058

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Zhai X, Chen X, Ohta S, Sun X. Review and prospect of the biomedical effects of hydrogen. Med Gas Res. (2014) 4:19. doi: 10.1186/s13618-014-0019-6

PubMed Abstract | CrossRef Full Text | Google Scholar

17. Ostojic SM. Molecular hydrogen: an inert gas turns clinically effective. Ann Med. (2015) 47:301–4. doi: 10.3109/07853890.2015.1034765

PubMed Abstract | CrossRef Full Text | Google Scholar

18. LeBaron TW, Laher I, Kura B, Slezak J. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes. Can J Physiol Pharmacol. (2019) 10:1–11. doi: 10.1139/cjpp-2019-0067

CrossRef Full Text | Google Scholar

19. Guan P, Sun ZM, Luo LF, Zhao YS, Yang SC, Yu FY, et al. Hydrogen gas alleviates chronic intermittent hypoxia-induced renal injury through reducing iron overload. Molecules. (2019) 24: 24:E1184. doi: 10.3390/molecules24061184

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Sakai D, Hirooka Y, Kawashima H, Ohno E, Ishikawa T, Suhara H, et al. Increase in breath hydrogen concentration was correlated with the main pancreatic duct stenosis. J Breath Res. (2018) 12:36004. doi: 10.1088/1752-7163/aaaf77

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Smith NW, Shorten PR, Altermann EH, Roy NC, McNabb WC. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes. (2018) 10:1–9. doi: 10.1080/19490976.2018.1546522

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. (2007) 361:670–4. doi: 10.1016/j.bbrc.2007.07.088

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Liu C, Kurokawa R, Fujino M, Hirano S, Sato B, Li XK. Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes. Sci Rep. (2014) 4:5485. doi: 10.1038/srep05485

PubMed Abstract | CrossRef Full Text | Google Scholar

24. Yamamoto R, Homma K, Suzuki S, Sano M, Sasaki J. Hydrogen gas distribution in organs after inhalation: real-time monitoring of tissue hydrogen concentration in rat. Sci Rep. (2019) 9:1255. doi: 10.1038/s41598-018-38180-4

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science. (1975) 190:152–4. doi: 10.1126/science.1166304

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. (2007) 13:688–94. doi: 10.1038/nm1577

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Ostojic SM. Inadequate production of H2 by gut microbiota and Parkinson disease. Trends Endocrinol Metab. (2018) 29:286–8. doi: 10.1016/j.tem.2018.02.006

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Hirayama M, Ito M, Minato T, Yoritaka A, LeBaron TW, Ohno K. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2′-deoxyguanine in Parkinson’s disease. Med Gas Res. (2018) 8:144–9. doi: 10.4103/2045-9912.248264

PubMed Abstract | CrossRef Full Text | Google Scholar

29. Meng J, Yu P, Jiang H, Yuan T, Liu N, Tong J, et al. Molecular hydrogen decelerates rheumatoid arthritis progression through inhibition of oxidative stress. Am J Transl Res. (2016) 8:4472–7.

PubMed Abstract | Google Scholar

30. Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q, et al. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-kappaB pathway and NLRP3 inflammasome. Mol Neurobiol. (2016) 53:3462–76. doi: 10.1007/s12035-015-9242-y

PubMed Abstract | CrossRef Full Text | Google Scholar

31. Gao Y, Yang H, Chi J, Xu Q, Zhao L, Yang W, et al. Hydrogen gas attenuates myocardial ischemia reperfusion injury independent of postconditioning in rats by attenuating endoplasmic reticulum stress-induced autophagy. Cell Physiol Biochem. (2017) 43:1503–4. doi: 10.1159/000481974

PubMed Abstract | CrossRef Full Text | Google Scholar

32. Dozen M, Enosawa S, Tada Y, Hirasawa K. Inhibition of hepatic ischemic reperfusion injury using saline exposed to electron discharge in a rat model. Cell Med. (2013) 5:83–7. doi: 10.3727/215517913X666486

PubMed Abstract | CrossRef Full Text | Google Scholar

33. Fan M, Xu X, He X, Chen L, Qian L, Liu J, et al. Protective effects of hydrogen-rich saline against erectile dysfunction in a streptozotocin induced diabetic rat model. J Urol. (2013) 190:350–6. doi: 10.1016/j.juro.2012.12.001

PubMed Abstract | CrossRef Full Text | Google Scholar

34. Zhang X, Liu J, Jin K, Xu H, Wang C, Zhang Z, et al. Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes. J Diabetes Investig. (2018) 9:83–90. doi: 10.1111/jdi.12674

PubMed Abstract | CrossRef Full Text | Google Scholar

35. Tamura T, Hayashida K, Sano M, Suzuki M, Shibusawa T, Yoshizawa J, et al. Feasibility and safety of hydrogen gas inhalation for post-cardiac arrest syndrome- first-in-human pilot study. Circ J. (2016) 80:1870–3. doi: 10.1253/circj.CJ-16-0127

PubMed Abstract | CrossRef Full Text | Google Scholar

36. Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget. (2017) 8:102653–73. doi: 10.18632/oncotarget.21130

PubMed Abstract | CrossRef Full Text | Google Scholar

37. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. (2012) 24:981–90. doi: 10.1016/j.cellsig.2012.01.008

PubMed Abstract | CrossRef Full Text | Google Scholar

38. Kumari S, Badana AK, G MM, G S, Malla R. Reactive oxygen species: a key constituent in cancer survival. Biomark Insights. (2018) 13:91914689. doi: 10.1177/1177271918755391

PubMed Abstract | CrossRef Full Text | Google Scholar

39. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. (2016) 2016:3164734. doi: 10.1155/2016/3164734

PubMed Abstract | CrossRef Full Text | Google Scholar

40. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. (2004) 7:97–110. doi: 10.1016/j.drup.2004.01.004

PubMed Abstract | CrossRef Full Text | Google Scholar

41. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. (2010) 44:479–96. doi: 10.3109/10715761003667554

PubMed Abstract | CrossRef Full Text | Google Scholar

42. Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. (2018) 41:1–25. doi: 10.1016/j.drup.2018.11.001

PubMed Abstract | CrossRef Full Text | Google Scholar

43. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. (2017) 16:79. doi: 10.1186/s12943-017-0648-1

PubMed Abstract | CrossRef Full Text | Google Scholar

44. Zha J, Chen F, Dong H, Shi P, Yao Y, Zhang Y, et al. Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J Transl Med. (2014) 12:163. doi: 10.1186/1479-5876-12-163

PubMed Abstract | CrossRef Full Text | Google Scholar

45. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. (2013) 12:931–47. doi: 10.1038/nrd4002

PubMed Abstract | CrossRef Full Text | Google Scholar

46. Yu J, Yu Q, Liu Y, Zhang R, Xue L. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells. PLoS ONE. (2017) 12:e173645. doi: 10.1371/journal.pone.0173645

PubMed Abstract | CrossRef Full Text | Google Scholar

47. Li Y, Li Q, Chen H, Wang T, Liu L, Wang G, et al. Hydrogen gas alleviates the intestinal injury caused by severe sepsis in mice by increasing the expression of heme oxygenase-1. Shock. (2015) 44:90–8. doi: 10.1097/SHK.0000000000000382

PubMed Abstract | CrossRef Full Text | Google Scholar

48. Zhou P, Lin B, Wang P, Pan T, Wang S, Chen W, et al. The healing effect of hydrogen-rich water on acute radiation-induced skin injury in rats. J Radiat Res. (2019) 60:17–22. doi: 10.1093/jrr/rry074

PubMed Abstract | CrossRef Full Text | Google Scholar

49. Iketani M, Ohshiro J, Urushibara T, Takahashi M, Arai T, Kawaguchi H, et al. Preadministration of hydrogen-rich water protects against lipopolysaccharide-induced sepsis and attenuates liver injury. Shock. (2017) 48:85–93. doi: 10.1097/SHK.0000000000000810

PubMed Abstract | CrossRef Full Text | Google Scholar

50. Dong A, Yu Y, Wang Y, Li C, Chen H, Bian Y, et al. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics. Int Immunopharmacol. (2018) 65:366–72. doi: 10.1016/j.intimp.2018.10.012

PubMed Abstract | CrossRef Full Text | Google Scholar

51. Yang Q, Ji G, Pan R, Zhao Y, Yan P. Protective effect of hydrogen-rich water on liver function of colorectal cancer patients treated with mFOLFOX6 chemotherapy. Mol Clin Oncol. (2017) 7:891–6. doi: 10.3892/mco.2017.1409

PubMed Abstract | CrossRef Full Text | Google Scholar

52. Zhao P, Jin Z, Chen Q, Yang T, Chen D, Meng J, et al. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun. (2018) 9:4241. doi: 10.1038/s41467-018-06630-2

PubMed Abstract | CrossRef Full Text | Google Scholar

53. Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. (2013) 13:842–57. doi: 10.1038/nrc3613

PubMed Abstract | CrossRef Full Text | Google Scholar

54. Dermond O, Ruegg C. Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives. Drug Resist Updat. (2001) 4:314–21. doi: 10.1054/drup.2001.0219

PubMed Abstract | CrossRef Full Text | Google Scholar

55. Shakola F, Suri P, Ruggiu M. Splicing regulation of pro-inflammatory cytokines and chemokines: at the interface of the neuroendocrine and immune systems. Biomolecules. (2015) 5:2073–100. doi: 10.3390/biom5032073

PubMed Abstract | CrossRef Full Text | Google Scholar

56. Bottazzi B, Riboli E, Mantovani A. Aging, inflammation, and cancer. Semin Immunol. (2018) 40:74–82. doi: 10.1016/j.smim.2018.10.011

PubMed Abstract | CrossRef Full Text | Google Scholar

57. Zitvogel L, Pietrocola F, Kroemer G. Nutrition, inflammation, and cancer. Nat Immunol. (2017) 18:843–50. doi: 10.1038/ni.3754

PubMed Abstract | CrossRef Full Text | Google Scholar

58. Liu K, Lu X, Zhu YS, Le N, Kim H, Poh CF. Plasma-derived inflammatory proteins predict oral squamous cell carcinoma. Front Oncol. (2018) 8:585. doi: 10.3389/fonc.2018.00585

PubMed Abstract | CrossRef Full Text | Google Scholar

59. Mager LF, Wasmer MH, Rau TT, Krebs P. Cytokine-induced modulation of colorectal cancer. Front Oncol. (2016) 6:96. doi: 10.3389/fonc.2016.00096

PubMed Abstract | CrossRef Full Text | Google Scholar

60. Ning K, Liu WW, Huang JL, Lu HT, Sun XJ. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res. (2018) 8:154–9. doi: 10.4103/2045-9912.248266

PubMed Abstract | CrossRef Full Text | Google Scholar

61. Zhang N, Deng C, Zhang X, Zhang J, Bai C. Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice. Asthma Res Pract. (2018) 4:3. doi: 10.1186/s40733-018-0040-y

PubMed Abstract | CrossRef Full Text | Google Scholar

62. Wardill HR, Mander KA, Van Sebille YZ, Gibson RJ, Logan RM, Bowen JM, et al. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer. (2016) 139:2635–45. doi: 10.1002/ijc.30252

PubMed Abstract | CrossRef Full Text | Google Scholar

63. Cheung YT, Ng T, Shwe M, Ho HK, Foo KM, Cham MT, et al. Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann Oncol. (2015) 26:1446–51. doi: 10.1093/annonc/mdv206

PubMed Abstract | CrossRef Full Text | Google Scholar

64. Vyas D, Laput G, Vyas AK. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther. (2014) 7:1015–23. doi: 10.2147/OTT.S60114

PubMed Abstract | CrossRef Full Text | Google Scholar

65. Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci. (2019) 20:E676. doi: 10.3390/ijms20030676

PubMed Abstract | CrossRef Full Text | Google Scholar

66. Li FY, Zhu SX, Wang ZP, Wang H, Zhao Y, Chen GP. Consumption of hydrogen-rich water protects against ferric nitrilotriacetate-induced nephrotoxicity and early tumor promotional events in rats. Food Chem Toxicol. (2013) 61:248–54. doi: 10.1016/j.fct.2013.10.004

PubMed Abstract | CrossRef Full Text | Google Scholar

67. Huang D, Ichikawa K. Drug discovery targeting apoptosis. Nat Rev Drug Discov. (2008) 7:1041. doi: 10.1038/nrd2765

PubMed Abstract | CrossRef Full Text | Google Scholar

68. Pfeffer CM, Singh A. Apoptosis: a target for anticancer therapy. Int J Mol Sci. (2018) 19:E448. doi: 10.3390/ijms19020448

PubMed Abstract | CrossRef Full Text | Google Scholar

69. Qiao L, Wong BC. Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat. (2009) 12:55–64. doi: 10.1016/j.drup.2009.02.002

PubMed Abstract | CrossRef Full Text | Google Scholar

70. Kumar S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer. (2009) 9:897–903. doi: 10.1038/nrc2745

PubMed Abstract | CrossRef Full Text | Google Scholar

71. Gao Y, Yang H, Fan Y, Li L, Fang J, Yang W. Hydrogen-rich saline attenuates cardiac and hepatic injury in doxorubicin rat model by inhibiting inflammation and apoptosis. Mediators Inflamm. (2016) 2016:1320365. doi: 10.1155/2016/1320365

PubMed Abstract | CrossRef Full Text | Google Scholar

72. Li Q, Tanaka Y, Miwa N. Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitroMed Gas Res. (2017) 7:76–85. doi: 10.4103/2045-9912.208510

PubMed Abstract | CrossRef Full Text | Google Scholar

73. Wang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, et al. The chinese society of clinical oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun. (2019) 39:10. doi: 10.1186/s40880-019-0349-9

PubMed Abstract | CrossRef Full Text | Google Scholar

74. Verheij M, Vens C, van Triest B. Novel therapeutics in combination with radiotherapy to improve cancer treatment: rationale, mechanisms of action and clinical perspective. Drug Resist Updat. (2010) 13:29–43. doi: 10.1016/j.drup.2010.01.002

PubMed Abstract | CrossRef Full Text | Google Scholar

75. Sun YJ, Hu YJ, Jin D, Li JW, Yu B. Health-related quality of life after treatment for malignant bone tumors: a follow-up study in China. Asian Pac J Cancer Prev. (2012) 13:3099–102. doi: 10.7314/APJCP.2012.13.7.3099

PubMed Abstract | CrossRef Full Text | Google Scholar

76. Susanne K, Michael F, Thomas S, Peter E, Andreas H. Predictors of fatigue in cancer patients: a longitudinal study. Support Care Cancer. (2019) 120:425–32. doi: 10.1007/s00520-019-4660-4

CrossRef Full Text | Google Scholar

77. Razzaghdoust A, Mofid B, Peyghambarlou P. Predictors of chemotherapy-induced severe anemia in cancer patients receiving chemotherapy. Support Care Cancer. (2019). doi: 10.1007/s00520-019-04780-7. [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

78. Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. (2006) 10:175–6. doi: 10.1016/j.ccr.2006.08.015

PubMed Abstract | CrossRef Full Text | Google Scholar

79. Inoue A, Saijo Y, Maemondo M, Gomi K, Tokue Y, Kimura Y, et al. Severe acute interstitial pneumonia and gefitinib. Lancet. (2003) 361:137–9. doi: 10.1016/S0140-6736(03)12190-3

PubMed Abstract | CrossRef Full Text | Google Scholar

80. Terasaki Y, Suzuki T, Tonaki K, Terasaki M, Kuwahara N, Ohsiro J, et al. Molecular hydrogen attenuates gefitinib-induced exacerbation of naphthalene-evoked acute lung injury through a reduction in oxidative stress and inflammation. Lab Invest. (2019) 99:793–806. doi: 10.1038/s41374-019-0187-z

PubMed Abstract | CrossRef Full Text | Google Scholar

81. Luo W, Wen G, Yang L, Tang J, Wang J, Wang J, et al. Dual-targeted and pH-sensitive doxorubicin prodrug-microbubble complex with ultrasound for tumor treatment. Theranostics. (2017) 7:452–65. doi: 10.7150/thno.16677

PubMed Abstract | CrossRef Full Text | Google Scholar

82. Shen BY, Chen C, Xu YF, Shen JJ, Guo HM, Li HF, et al. Is the combinational administration of doxorubicin and glutathione a reasonable proposal? Acta Pharmacol Sin. (2019) 40:699–709. doi: 10.1038/s41401-018-0158-8

PubMed Abstract | CrossRef Full Text | Google Scholar

83. Matsushita T, Kusakabe Y, Kitamura A, Okada S, Murase K. Investigation of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using blood oxygenation level-dependent magnetic resonance imaging. Jpn J Radiol. (2011) 29:503–12. doi: 10.1007/s11604-011-0588-4

PubMed Abstract | CrossRef Full Text | Google Scholar

84. Kitamura A, Kobayashi S, Matsushita T, Fujinawa H, Murase K. Experimental verification of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using dynamic contrast-enhanced CT. Br J Radiol. (2010) 83:509–14. doi: 10.1259/bjr/25604811

PubMed Abstract | CrossRef Full Text | Google Scholar

85. Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. (2009) 64:753–61. doi: 10.1007/s00280-008-0924-2

PubMed Abstract | CrossRef Full Text | Google Scholar

86. Meng X, Chen H, Wang G, Yu Y, Xie K. Hydrogen-rich saline attenuates chemotherapy-induced ovarian injury via regulation of oxidative stress. Exp Ther Med. (2015) 10:2277–82. doi: 10.3892/etm.2015.2787

PubMed Abstract | CrossRef Full Text | Google Scholar

87. Marco MR, Zhou L, Patil S, Marcet JE, Varma MG, Oommen S, et al. Consolidation mFOLFOX6 chemotherapy after chemoradiotherapy improves survival in patients with locally advanced rectal cancer: final results of a multicenter phase II trial. Dis Colon Rectum. (2018) 61:1146–55. doi: 10.1097/DCR.0000000000001207

PubMed Abstract | CrossRef Full Text | Google Scholar

88. Horimatsu T, Nakayama N, Moriwaki T, Hirashima Y, Fujita M, Asayama M, et al. A phase II study of 5-fluorouracil/L-leucovorin/oxaliplatin. (mFOLFOX6) in Japanese patients with metastatic or unresectable small bowel adenocarcinoma. Int J Clin Oncol. (2017) 22:905–12. doi: 10.1007/s10147-017-1138-6

CrossRef Full Text | Google Scholar

89. Chuai Y, Zhao L, Ni J, Sun D, Cui J, Li B, et al. A possible prevention strategy of radiation pneumonitis: combine radiotherapy with aerosol inhalation of hydrogen-rich solution. Med Sci Monit. (2011) 17:Y1–4. doi: 10.12659/MSM.881698

PubMed Abstract | CrossRef Full Text | Google Scholar

90. Mei K, Zhao S, Qian L, Li B, Ni J, Cai J. Hydrogen protects rats from dermatitis caused by local radiation. J Dermatolog Treat. (2014) 25:182–8. doi: 10.3109/09546634.2012.762639

PubMed Abstract | CrossRef Full Text | Google Scholar

91. Rodriguez ML, Martin MM, Padellano LC, Palomo AM, Puebla YI. Gastrointestinal toxicity associated to radiation therapy. Clin Transl Oncol. (2010) 12:554–61. doi: 10.1007/s12094-010-0553-1

PubMed Abstract | CrossRef Full Text | Google Scholar

92. Xiao HW, Li Y, Luo D, Dong JL, Zhou LX, Zhao SY, et al. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp Mol Med. (2018) 50:e433. doi: 10.1038/emm.2017.246

PubMed Abstract | CrossRef Full Text | Google Scholar

93. Kang KM, Kang YN, Choi IB, Gu Y, Kawamura T, Toyoda Y, et al. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med Gas Res. (2011) 1:11. doi: 10.1186/2045-9912-1-11

PubMed Abstract | CrossRef Full Text | Google Scholar

94. Phan J, Ng V, Sheinbaum A, French S, Choi G, El KM, et al. Hyperlipidemia and nonalcoholic steatohepatitis predispose to hepatocellular carcinoma development without cirrhosis. J Clin Gastroenterol. (2019) 53:309–13. doi: 10.1097/MCG.0000000000001062

PubMed Abstract | CrossRef Full Text | Google Scholar

95. Ma C, Zhang Q, Greten TF. Non-alcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. Febs J. (2018) 285:752–62. doi: 10.1111/febs.14209

CrossRef Full Text | Google Scholar

96. Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, et al. Hydrogen-rich water prevents progression of non-alcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology. (2012) 56:912–21. doi: 10.1002/hep.25782

CrossRef Full Text | Google Scholar

97. Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG, et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA. (2000) 97:14478–83. doi: 10.1073/pnas.97.26.14478

PubMed Abstract | CrossRef Full Text | Google Scholar

98. Wang D, Wang L, Zhang Y, Zhao Y, Chen G. Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother. (2018) 104:788–97. doi: 10.1016/j.biopha.2018.05.055

PubMed Abstract | CrossRef Full Text | Google Scholar

99. Shang L, Xie F, Li J, Zhang Y, Liu M, Zhao P, et al. Therapeutic potential of molecular hydrogen in ovarian cancer. Transl Cancer Res. (2018) 7:988–95. doi: 10.21037/tcr.2018.07.09

CrossRef Full Text | Google Scholar

100. Liu MY, Xie F, Zhang Y, Wang TT, Ma SN, Zhao PX, et al. Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation. Stem Cell Res Ther. (2019) 10:145. doi: 10.1186/s13287-019-1241-x

PubMed Abstract | CrossRef Full Text | Google Scholar

101. Zhang JY, Liu C, Zhou L, Qu K, Wang R, Tai MH, et al. A review of hydrogen as a new medical therapy. Hepatogastroenterology. (2012) 59:1026–32. doi: 10.5754/hge11883

PubMed Abstract | CrossRef Full Text | Google Scholar

102. Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr Pharm Des. (2011) 17:2241–52. doi: 10.2174/138161211797052664

PubMed Abstract | CrossRef Full Text | Google Scholar

103. Dixon BJ, Tang J, Zhang JH. The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med Gas Res. (2013) 3:10. doi: 10.1186/2045-9912-3-10

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Citation: Li S, Liao R, Sheng X, Luo X, Zhang X, Wen X, Zhou J and Peng K (2019) Hydrogen Gas in Cancer Treatment. Front. Oncol. 9:696. doi: 10.3389/fonc.2019.00696

Received: 02 May 2019; Accepted: 15 July 2019;
Published: 06 August 2019.

Edited by:

Nelson Shu-Sang Yee, Penn State Milton S. Hershey Medical Center, United States

Reviewed by:

Leo E. Otterbein, Beth Israelv Deaconess Medical Center and Harvard Medical School, United States
Paolo Armando Gagliardi, University of Bern, Switzerland

Copyright © 2019 Li, Liao, Sheng, Luo, Zhang, Wen, Zhou and Peng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jin Zhou, zhou-jin-2008@163.com; Kang Peng, kds978@163.com

These authors share co-first authorship

Molecular hydrogen (water) benefits/effects for METABOLIC SYNDROME

 

The objective of this study was to examine the effectiveness of molecular hydrogen rich water (1.5-2 L/day; molecular hydrogen concentration; 0.55-0.65 mM)) in an open label, 8-week study on 20 human subjects with potential metabolic syndrome.

Metabolic syndrome is characterized by cardiometabolic risk factors that include obesity, insulin resistance, hypertension and dyslipidemia. Oxidative stress is known to play a major role in the pathogenesis of metabolic syndrome.

The consumption of hydrogen rich water for 8 weeks resulted in a 39% increase (p<0.05) in antioxidant enzyme superoxide dismutase (SOD) and a 43% decrease (p<0.05) in thiobarbituric acid reactive substances (TBARS) in urine.

Further, subjects demonstrated an 8% increase in high density lipoprotein (HDL)-cholesterol and a 13% decrease in total cholesterol/HDL-cholesterol from baseline to week 4.

There was no change in fasting glucose levels during the 8 week study.

In conclusion, drinking molecular hydrogen rich water represents a potentially novel therapeutic and preventive strategy for metabolic syndrome.

 

 

 2010 Mar;46(2):140-9. doi: 10.3164/jcbn.09-100. Epub 2010 Feb 24.
Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study.

Heart, Lung and Esophageal Surgery Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15213, USA.

molecular hydrogen water improves lipid and glucose metabolism in patients with TYPE 2 DIABETES or impaired glucose tolerance

Supplementation of molecular hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance.

It is well established that molecular hydrogen (water) has a selective oxidation/free radical reducing action.

Oxidative stress is recognized widely as being associated with various disorders including diabetes, hypertension, and atherosclerosis.

We therefore investigated the effects of molecular hydrogen-rich water intake on lipid and glucose metabolism in patients with either type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT).

We performed a randomized, double-blind, placebo-controlled, crossover study in 30 diabetes patients with T2DM controlled by diet and exercise therapy and 6 patients with IGT.

The diabetes patients consumed either 900 mL/d of  hydrogen-rich pure water or 900 mL of placebo pure water for 8 weeks, with a 12-week washout period. Several biomarkers of oxidative stress, insulin resistance, and glucose metabolism, assessed by an oral glucose tolerance test, were evaluated at baseline and at 8 weeks.

Intake of  hydrogen-rich water was associated with significant decreases in the levels of modified low-density lipoprotein (LDL) cholesterol (ie, modifications that increase the net negative charge of LDL), small dense LDL, and urinary 8-isoprostanes by 15.5% (P < .01), 5.7% (P < .05), and 6.6% (P < .05), respectively.

Hydrogen-rich water intake was also associated with a trend of decreased serum concentrations of oxidized LDL and free fatty acids, and increased plasma levels of adiponectin and extracellular-superoxide dismutase. In 4 of 6 patients with IGT, intake of molecular hydrogen-rich water normalized the oral glucose tolerance test.

In conclusion, these results suggest that supplementation with molecular hydrogen-rich water may have a beneficial role in prevention of T2DM and insulin resistance.

hydrogen-enriched water for mitochondrial and inflammatory MYOPATHIES

Molecular hydrogen has prominent effects on more than 30 animal models especially of oxidative stress-mediated diseases and inflammatory diseases. In addition, hydrogen effects on humans have been reported in diabetes mellitus type 2, hemodialysis, metabolic syndrome, radiotherapy for liver cancer, and brain stem infarction. Molecular hydrogen effects are ascribed to specific radical-scavenging activities that eliminate hydroxyl radical and peroxynitrite, and also to signal-modulating activities, but the detailed molecular mechanisms still remain elusive. Molecular hydrogen is a safe molecule that is largely produced by intestinal bacteria in rodents and humans, and no adverse effects have been documented.

Methods

We performed open-label trial of drinking 1.0 liter per day of molecular hydrogen-enriched water for 12 weeks in 5 patients with progressive muscular dystrophy (PMD), 4 patients with polymyositis/dermatomyositis (PM/DM), and 4 patients with mitochondrial myopathies (MM), and measured 18 serum parameters as well as urinary 8-isoprostane every 4 weeks.

We next conducted randomized, double-blind, placebo-controlled, crossover trial of 0.5 liter per day of hydrogen-enriched water or placebo water for 8 weeks in 10 patients with dermatomyositis  DM and 12 patients with mitochondrial myopathies MM, and measured 18 serum parameters every 4 weeks.

Results

In the open-label trial, no objective improvement or worsening of clinical symptoms was observed. We, however, observed significant effects in lactate-to-pyruvate ratios in progressive muscular dystrophy PMD and mitochondrial myopathies MM, fasting blood glucose in progressive muscular dystrophy PMD, serum matrix metalloproteinase-3 (MMP3) in polymyositis/dermatomyositis PM/DM, and serum triglycerides in polymyositis/dermatomyositis PM/DM.

In the double-blind trial, no objective clinical effects were observed, but a significant improvement was detected in lactate in mitochondrial myopathies  MM. Lactate-to-pyruvate ratios in  mitochondrial myopathies MM and MMP3 in dermatomyositis DM also exhibited favorable responses but without statistical significance.

No adverse effect was observed in either trial except for hypoglycemic episodes in an insulin-treated MELAS patient, which subsided by reducing the insulin dose.

Conclusions

Molecular hydrogen-enriched water improves mitochondrial dysfunction in mitochondrial myopathies  MM and inflammatory processes in polymyositis/dermatomyositis  PM/DM.

Less prominent effects with the double-blind trial compared to the open-label trial were likely due to a lower amount of administered molecular hydrogen and a shorter observation period, which implies a threshold effect or a dose-response effect of molecular hydrogen.

Background

Ohsawa and colleagues first reported an effect of molecular hydrogen gas on cerebral infarction in June 2007 []. Effects of molecular hydrogen administered in the forms of inhaled gas, drinking water, instillation, and intraperitoneal injection have been reported for 31, 4, and 5 diseases in animal models, cells, and humans, respectively [].

Molecular hydrogen exhibits prominent effects especially on oxidative stress-mediated diseases and inflammatory diseases in rodents. Molecular Hydrogen scavenges hydroxyl radicals and less efficiently peroxynitrite []. The radical-scavenging activities, however, are unlikely to be an exclusive mechanism, because the amount of radical oxygen species generated in rodents and humans is much more than the amount of molecular hydrogen molecules taken up by the body. Indeed, the amount of molecular hydrogen taken up by drinking molecular hydrogen-enriched water (HEW) is 100 or more times less than that by inhaling 2% molecular hydrogen gas, but drinking molecular hydrogen-enriched water HEW exhibits beneficial effects as good as or even better than inhaling 2% molecular hydrogen gas in rodents [], which suggests the lack of a simple dose-response effect.

Our previous study on type 1 allergy also indicates that molecular hydrogen suppresses type 1 allergy by acting as a gaseous signal modulator not as a free radical scavenger [].

Effects of molecular hydrogen in humans have been examined in five studies.

First, a randomized, double-blind, placebo-controlled crossover study of 900 ml/day of molecular hydrogen-enriched water HEW for 8 weeks in 30 patients with diabetes mellitus type 2 demonstrated significant decreases of electronegative charge-modified LDL cholesterol, small dense LDL, and urinary 8-isoprostanes [].

Second, an open-label trial of electrolyzed molecular hydrogen-enriched hemodialysis solution in 9 patients for 4 months [] and 21 patients for 6 months [] showed significant decreases of systolic blood pressure before and after dialysis, as well as of plasma monocyte chemoattractant protein 1 and myeloperoxidase.

see also alkaline ionized water / molecular hydrogen water and hemodialisys

Third, an open-label trial of 1.5-2.0 liters per day of moelcualr hydrogen enriched water HEW for 8 weeks in 20 subjects with metabolic syndrome exhibited a 39% increase of urinary superoxide dismutase (SOD), a 43% decrease of urinary thiobarbituric acid reactive substances (TBARS), an 8% increase of high density lipoprotein (HDL)-cholesterol, and a 13% decrease of total cholesterol/HDL-cholesterol ratio [].

Fourth, a randomized placebo-controlled study of 1.5-2.2 liters/day of molecular hydrogen enriched water HEW for 6 weeks in 49 patients receiving radiotherapy for malignant liver tumors showed marked improvements of QOL scores [].As the study was not blinded, subjective QOL scores tended to be overestimated by a placebo effect, but objective markers for oxidative stress were also significantly decreased.

Fifth, drip infusion of hydrogen-enriched saline in combination with Edaravone, a clinically approved radical scavenger for cerebral infarction, for 7 days in 8 patients with brain stem infarction was compared to 24 such patients receiving Edaravone alone []. Although the study was not randomized and not blinded, MRI markers of patients infused with molecular hydrogen showed significant improvements and accelerated normalization.

Being prompted by the prominent effects of molecular hydrogen on inflammatory diseases and oxidative stress-mediated diseases especially in rodents, we performed an open-label trial of drinking 1.0 liter per day of molecular hydrogen enriched water  HEW for 12 weeks in 14 patients with muscle diseases, and identified improvement in four parameters: (i) a decrease of the lactate-to-pyruvate ratio in mitochondrial myopathies (MM) and progressive muscular dystrophy (PMD); (ii) a decrease of serum matrix metalloproteinase-3 (MMP3) in polymyositis/dermatomyositis (PM/DM), (iii) a decrease of fasting glucose in PMD, and (iv) a decrease of serum triglycerides in polymyositis/dermatomyositis  PM/DM.

We then conducted a randomized, double-blind, placebo-controlled, crossover trial of 0.5 liter per day of molecular hydrogen enriched water HEW for 8 weeks in 12 mitochondrial myopathies MM and 10 dermatomyositis DM cases. We observed that molecular hydrogen enriched water HEW significantly improved serum lactate in mitochondrial myopathies MM. In both studies, some patients reported subjective improvement of fatigability, diarrhea, and myalgia, but others reported floating sensation and worsening of diarrhea.

We observed no objective improvement or worsening of clinical symptoms during each study.

Our studies imply that molecular hydrogen enriched water HEW improves clinical parameters in mitochondrial myopathies  MM and polymyositis/dermatomyositis  PM/DM, but 0.5 liter/day for 8 weeks is likely to be insufficient to demonstrate statistically significant effects.

Patients and methods

Patients

For the open-label trial, we recruited 5 patients with progressive muscular dystrophy PMD, 4 patients with polymyositis/dermatomyositis PM/DM, and 5 patients with mitochondrial myopathies MM.

The progressive muscular dystrophy PMD patients comprised 1 male with Miyoshi myopathy and 4 females with limb girdle muscular dystrophy type 2B with an average age and SD of 50.4 ± 15.9 years (range 25 – 66).

The polymyositis/dermatomyositis PM/DM patients comprised 2 males and 2polymyositis/dermatomyositis females with an average age of 53.8 ± 24.8 years (range 29 – 83). All the polymyositis/dermatomyositis PM/DM cases were taking 5 – 10 mg of prednisolone per day and were well controlled.

The mitochondrial myopathies MM patients comprised 4 cases with MELAS (2 males and 2 females with an average age of 45.8 ± 12.3 years, range 37 – 64) and a 54-year-old female with chronic progressive external ophthalmoplegia (CPEO).

For the randomized, double-blind, placebo-controlled, crossover trial, we recruited 12 patients with mitochondrial myopathies MM and 10 patients with dermatomyositis DM.

The mitochondrial myopathies  MM patients comprised 5 cases with MELAS (2 males and 3 females with an average age of 44.6 ± 17.6 years, range 20 – 65), as well as 7 cases with CPEO (3 males and 4 females with an average age of 49.1 ± 11.1 years, range 29 – 61).

The dermatomyositis DM patients comprised 3 males and 7 females with an average age of 49.6 ± 13.7 years (range 32 – 66). All thdermatomyositis e DM patients were well controlled with 5 – 10 mg prednisolone per day.

3 mitochondrial myopathies MM and 3 DM dermatomyositis patients participated in both trials. Both trials were approved by the Ethical Review Board of the Aichi Medical University. Informed consent was obtained from each patient.

Protocols

We purchased 500 ml molecular hydrogen enriched water HEW or placebo water in aluminum pouch from Blue Mercury Inc. (Tokyo, Japan). We measured molecular hydrogen concentrations using an H2-N molecular hydrogen needle sensor attached to a PA2000 2-Channel Picoammeter (Unisense Science, Aarhus, Denmark). The molecular hydrogen concentrations were ~0.5 ppm (~31% saturation). We also confirmed that molecular hydrogen in placebo water was undetectable with our system. For each trial, we instructed patients to evacuate the air from the pouch and to close a plastic cap tightly every time after they drink water to keep the molecular hydrogen concentration as high as possible.

For the open-label trial, patients took 1.0 liter per day of molecular hydrogen enriched water HEW in five to ten divided doses for 12 weeks. We measured 18 serum and one urinary parameters and recorded clinical symptoms at 0, 4, 8, 12, 16 weeks.

For the double-blind trial, patients took 0.5 liter per day of molecular hydrogen enriched water HEW or placebo water in two to five divided doses for 8 weeks. Between the 8-week trials with molecular hydrogen enriched water HEW and placebo, we placed a 4-week washout period. We measured 18 serum parameters and recorded clinical symptoms at 0, 4, 8, 12, 16, 20, 24 weeks. In the double-blind trial, we did not measure urinary 8-isoprostane levels.

The data were statistically analyzed using one-way repeated measures ANOVA for the open-label trial and two-way repeated measures ANOVA for the double-blind trial, both followed by the Bonferroni’s multiple comparison test using Prism version 4.0c (Graphpad Software, San Diego, CA).

Results

Open-label trial

Fourteen patients with PMD, PM/DM, and MM participated in the study and no patient dropped out of the study. Patients took 1.0 liter of molecular hydrogen enriched water HEW for 12 weeks and we measured 18 serum and one urinary parameters every 4 weeks (Table (Table1).1).

We observed no objective improvement or worsening of clinical symptoms during the study. All the patients reported increased micturition frequency. Two MELAS patients reported improvement of fatigability, and another MELAS patient complained mild occasional floating sensation. We estimated statistical significance using one-way repeated measures ANOVA analysis and detected five parameters (Figure (Figure1).1). Serum lactate-to-pyruvate (L/P) ratios of MM patients were high before the study, and were decreased during the study (Figure (Figure1A).1A). Serum L/P ratios and fasting glucose levels of PMD patients were elevated after the study, but the values were still within normal ranges (Figures (Figures1B1B and and1C).1C). Serum MMP3 levels of DM patients were decreased down to 72.9% of those before HEW, which were again increased after the study (Figure (Figure1D).1D). Serum triglyceride levels of DM patients were elevated after the study (Figure (Figure1E1E).

Table 1

Open-label trial of HEW in 14 myopathic patients

Figure 1

Temporal profiles of four parameters that demonstrate statistical significance by one-way repeated measures ANOVA in the open-label trial. Ratios of serum lactate/pyruvate (L/P) in 5 mitochondrial myopathies (MM) patients (A) and 4 progressive muscular 

Randomized, double-blind, placebo-controlled, crossover trial

Twelve MM and ten DM patients participated in the study and no patient dropped out of the study. Patients took 0.5 liter of molecular hydrogen enriched water HEW or placebo water for 8 weeks and we measured 18 serum parameters every 4 weeks (Table (Table2).2). An MM patient reported increased micturition frequency on HEW. A DM patient reported subjective improvement of fatigability and diarrhea on molecular hydrogen enriched water HEW, but an MM patient rather complained increased diarrhea at first on molecular hydrogen enriched water HEW. Another DM patient reported an improvement of myalgia on molecular hydrogen enriched water HEW. A MELAS patient had hypoglycemic episodes only on molecular hydrogen enriched water HEW, but the episodes subsided after the insulin dose was decreased. We observed no objective improvement or worsening of clinical symptoms during the study. Two-way repeated measures ANOVA analysis revealed that only serum lactate levels were significantly decreased in MM by molecular hydrogen enriched water HEW (Figure (Figure2A).2A). Temporal profiles of serum L/P ratios in MM (Figure (Figure2B)2B) and of serum MMP3 levels in DM (Figure (Figure2C)2C) also demonstrated favorable responses to molecular hydrogen enriched water HEW but without statistical significance.

Table 2

Randomized, double-blind, placebo-controlled, crossover trial of molecular hydrogen enriched water HEW in 10 DM and 12 MM patients

Figure 2

Temporal profiles of three parameters in the double-blind trial. Serum lactate (A) and L/P ratios (B) in 12 mitochondrial myopathies (MM) patients. (C) Serum MMP3 in 10 dermatomyositis (DM) patients. Patients took molecular hydrogen enriched water HEW or placebo for 8 weeks. Means and 

Discussion

We performed open-label and double-blind studies of molecular hydrogen enriched water HEW on myopathic patients. In the open-label study, we observed statistical significance of molecular hydrogen water effects in four parameters: L/P ratios in MM and PMD; fasting glucose in PMD; MMP3 in PM/DM; and triglycerides in PM/DM (Figure (Figure1).1).

In the double-blind study, serum lactate levels were significantly improved in MM. L/P ratios in MM and MMP3 in DM were also improved but without statistical significance (Figure (Figure2).2).

Small numbers of participants in both the open-label and double-blind studies might have failed to disclose statistically significant effects of molecular hydrogen enriched water HEW.

In MM, the mitochondrial electron transfer system (mETS) is compromised by mutations in mitochondrial DNA []. This results in a decreased influx of NADH into mETS and elevates NADH levels in the cytoplasm, which facilitates conversion of pyruvate to lactate by lactate dehydrogenase. Thus, lactate and L/P ratio are useful surrogate markers to estimate functions of mETS, and are usually abnormally elevated in MM []. Defective mETS also causes leakage of electrons from mitochondrial inner membranes and increases production of reactive oxygen species (ROS), which further damages mETS [,]. Reduction of the L/P ratios in the open-label and double-blind studies suggests that hydrogen alleviates mETS dysfunction in MM either by scavenging ROS or by yet unidentified signaling mechanisms.

MMP3 belongs to a family of calcium-dependent zinc proteinases induced by cytokines and secreted by inflammatory cells. MMPs enhance T-cell migration and adhesion, and also degrade the extracellular matrix proteins []. MMP3 is increased in a fraction of DM patients []. MMP3 may facilitate lymphocyte adhesion and enhance T-cell-mediated cytotoxicity by degrading extracellular matrix proteins in DM.

molecular hydrogen water improved serum MMP3 levels in the open-label and double-blind studies, which is expected to ameliorate pathogenic inflammatory processes that culminates in muscle fiber destruction.

We observed less prominent effects with the double-blind study compared to the open-label study. The lack of statistically significance in the double-blind study is possibly due to a lower amount of molecular hydrogen enriched water HEW (1.0 vs. 0.5 liter per day) and to a shorter observation period (12 vs. 8 weeks). In the open-label study, drinking 1.0 liter of molecular hydrogen enriched water HEW was not readily accommodated by most myopathic patients. molecular hydrogen does not show simple dose-response relationship in rodents [], and ad libitum administration of even 5%-saturated molecular hydrogen enriched water HEW markedly attenuates development of Parkinson’s disease in mice []. We thus reduced the amount of hydrogen to 0.5 liter in the double-blind trial, and also shortened the observation period to minimize the burden on the participants. This, however, might have masked effects of molecular hydrogen enriched water HEW. Indeed, when we compare studies of diabetes mellitus type 2 [], the current open-label trial, and metabolic syndrome [], the participants took 0.9, 1.0, and 1.5-2.0 liters of molecular hydrogen enriched water HEW, respectively. Ratios of total cholesterol/HDL-cholesterol are available at 8 weeks in all the studies, and are changed to 103.8%, 98.6%, and 95.8%, respectively, of those before molecular hydrogen administration, which is in accordance with a dose-response effect of molecular hydrogen enriched water HEW. Additionally, among the two previous studies [,] and the current open-label and double-blind studies, the most prominent effects are observed with 1.5-2.0 liters of molecular hydrogen enriched water HEW. As drinking a large amount of molecular hydrogen enriched water HEW is not easily accommodated by most patients especially in winter, a threshold effect and/or a dose-response effect should be further elaborated for each pathological state.

Conclusions

molecular hydrogen enriched water HEW is effective for mitochondrial dysfunction in MM and inflammatory processes in DM.

molecular hydrogen may have a threshold effect or a dose-response effect and 1.0 liter or more per day of molecular hydrogen enriched water HEW is likely to be required to exert beneficial effects.

 

Abbreviations

HEW: hydrogen-enriched water; PMD: progressive muscular dystrophy; PM: polymyositis; DM: dermatomyositis; MM: mitochondrial myopathies; CPEO: chronic progressive external ophthalmoplegia; MELAS: mitochondrial myopathy with lactic acidosis and stroke-like episodes; MMP3: matrix metalloproteinase-3.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TI and KS examined patients and acquired data. MIand TI organized data and performed statistical analysis. MIand KO wrote the paper. MI4, MI5, and KO conceived the study. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank the patients for their participation in these studies. We thank Fumiko Ozawa for her technical assistance. This work was supported by Grants-in-Aid from the Ministry of Health, Labor, and Welfare of Japan and the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

  • Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–694. doi: 10.1038/nm1577. [PubMed] [Cross Ref]
  • Ohta S, Nakao A, Ohno K. The 2011 Medical Molecular Hydrogen Symposium: An Inaugural Symposium of the Journal Medical Gas Research. Med Gas Res. 2011;1:10. doi: 10.1186/2045-9912-1-10. [PMC free article] [PubMed] [Cross Ref]
  • Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic Antioxidant Medical Gas. J Clin Biochem Nutr. 2009;44:1–13. doi: 10.3164/jcbn.08-193R. [PMC free article] [PubMed] [Cross Ref]
  • Hong Y, Chen S, Zhang JM. Hydrogen as a selective antioxidant: a review of clinical and experimental studies. J Int Med Res. 2010;38:1893–1903. [PubMed]
  • Itoh T, Fujita Y, Ito M, Masuda A, Ohno K, Ichihara M, Kojima T, Nozawa Y, Ito M. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun. 2009;389:651–656. doi: 10.1016/j.bbrc.2009.09.047.[PubMed] [Cross Ref]
  • Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008;28:137–143. doi: 10.1016/j.nutres.2008.01.008. [PubMed] [Cross Ref]
  • Nakayama M, Kabayama S, Nakano H, Zhu WJ, Terawaki H, Nakayama K, Katoh K, Satoh T, Ito S. Biological Effects of Electrolyzed Water in Hemodialysis. Nephron Clin Pract. 2009;112:C9–C15. doi: 10.1159/000210569. [PubMed] [Cross Ref]
  • Nakayama M, Nakano H, Hamada H, Itami N, Nakazawa R, Ito S. A novel bioactive haemodialysis system using dissolved dihydrogen (H-2) produced by water electrolysis: a clinical trial. Nephrol Dial Transplant. 2010;25:3026–3033. doi: 10.1093/ndt/gfq196. [PubMed] [Cross Ref]
  • Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of Hydrogen Rich Water on Antioxidant Status of Subjects with Potential Metabolic Syndrome-An Open Label Pilot Study. J Clin Biochem Nutr. 2010;46:140–149. doi: 10.3164/jcbn.09-100. [PMC free article] [PubMed][Cross Ref]
  • Kang K-M, Kang Y-N, Choi I-B, Gu Y, Kawamura T, Toyoda Y, Nakao A. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med Gas Res. 2011;1:11. doi: 10.1186/2045-9912-1-11. [PMC free article] [PubMed] [Cross Ref]
  • Ono H, Nishijima Y, Adachi1 N, Tachibana S, Chitoku S, Mukaihara S, Sakamoto M, Kudo Y, Nakazawa J, Kaneko K, Nawashiro H. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med Gas Res. 2011;1:12. doi: 10.1186/2045-9912-1-12.[PMC free article] [PubMed] [Cross Ref]
  • DiMauro S. Pathogenesis and treatment of mitochondrial myopathies: recent advances. Acta Myologica. 2010;29:333–338. [PMC free article] [PubMed]
  • Wei YH, Lu CY, Wei CY, Ma YS, Lee HC. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol. 2001;44:1–11. [PubMed]
  • McKenzie M, Liolitsa D, Hanna MG. Mitochondrial disease: mutations and mechanisms. Neurochem Res. 2004;29:589–600. [PubMed]
  • Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516. doi: 10.1146/annurev.cellbio.17.1.463. [PMC free article] [PubMed][Cross Ref]
  • Nishijima C, Hayakawa I, Matsushita T, Komura K, Hasegawa M, Takehara K, Sato S. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin Exp Immunol. 2004;138:357–363. doi: 10.1111/j.1365-2249.2004.02615.x. [PMC free article] [PubMed][Cross Ref]
  • Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Nakabeppu Y, Noda M. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One. 2009;4:e7247. doi: 10.1371/journal.pone.0007247.[PMC free article] [PubMed] [Cross Ref]

Articles from Medical Gas Research are provided here courtesy of Wolters Kluwer — Medknow Publications
Logo of mgr
. 2011; 1: 24.
Published online 2011 Oct 3. doi:  10.1186/2045-9912-1-24
PMCID: PMC3231939
Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies

 

Drinking hydrogen water enhances ENDURANCE and relieves psychometric FATIGUE: a randomized, double-blind, placebo-controlled study 

Drinking hydrogen water enhances endurance and relieves psychometric fatigue: a randomized, double-blind, placebo-controlled study

Abstract

Acute physical exercise increases reactive oxygen species in skeletal muscle, leading to tissue damage and fatigue. Molecular hydrogen (H2) acts as a therapeutic antioxidant directly or indirectly by inducing antioxidative enzymes.

Here, we examined the effects of drinking hydrogen H2 water (H2-infused water) on psychometric fatigue and endurance capacity in a randomized, double-blind, placebo-controlled fashion.

In Experiment 1, all participants(humans) drank only placebo water in the first cycle ergometer exercise session, and for comparison they drank either hydrogen H2 water or placebo water 30 min before exercise in the second examination.In these healthy non-trained participants (n = 99), psychometric fatigue judged by visual analogue scales was significantly decreased in the hydrogen H2 water group after mild exercise. When each group was divided into 2 subgroups, the subgroup with higher visual analogue scale values was more sensitive to the effect of hydrogen water H2.

In Experiment 2, trained participants (n = 60) were subjected to moderate exercise by cycle ergometer in a similar way as in Experiment 1, but exercise was performed 10 min after drinking hydrogen H2 water. Endurance/fatigue were significantly improved/relieved in the hydrogen water H2 group as judged by maximal oxygen consumption and Borg’s scale, respectively.

Taken together, drinking hydrogen H2 water just before exercise exhibited anti-fatigue and improved endurance effects.

PMID:31251888
DOI:10.1139/cjpp-2019-0059
 2019 Jun 28:1-6. doi: 10.1139/cjpp-2019-0059. [Epub ahead of print]
Drinking hydrogen water enhances endurance and relieves psychometric fatigue: a randomized, double-blind, placebo-controlled study 1.

Author information

1 Department of Health and Sports Science, Nippon Medical School, Musashino, Tokyo 180-0023, Japan.
2 Fitness Club, Asahi Big S Mukogaoka, Kawasaki-city, Kanagawa pref. 214-0014, Japan.
3 Hydrogen Health Medical Laboratory, Co., Ltd., Arakawa-ku, Tokyo 116-0001, Japan.
4 Slovak Academy of Sciences, Centre of Experimental Medicine, Institute for Heart Research, Bratislava 84005, Slovak Republic.
5 Molecular Hydrogen Institute, Enoch, UT 84721, USA.
6Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.

Effects of hydrogen rich water on prolonged intermittent EXERCISE

BACKGROUND:
Recent studies showed a positive effect of hydrogen rich water (HRW) intake on acid-base homeostasis at rest. We investigated 2-weeks of hydrogen rich water HRW intake on repeated sprint performance and acid-base status during prolonged intermittent cycling exercise.

METHODS:
In a cross over single-blind protocol, 8 trained male cyclists (age [mean±SD] 41±7 years, body mass 72.3±4.4 kg, height 1.77±0.04 m, maximal oxygen uptake [V̇O2max] 52.6±4.4 mL·kg-1·min-1) were provided daily with 2 liters of placebo normal water (PLA, pH 7.6, oxidation/reduction potential [ORP] +230 mV, free hydrogen content 0 ppb) or hydrogen rich water HRW (pH 9.8, ORP -180 mV, free Hydrogen 450 ppb). Tests were performed at baseline and after each period of 2 weeks of treatment. The treatments were counter-balanced and the sequence randomized. The 30-minute intermittent cycling trial consisted in 10 3-minute blocks, each one composed by 90 seconds at 40% V̇O2max, 60 seconds at 60% V̇O2max, 16 seconds all out sprint, and 14 seconds active recovery. Oxygen uptake (V̇O2), heart rate and power output were measured during the whole test, while mean and peak power output (PPO), time to peak power and Fatigue Index (FI) were determined during all the 16 seconds sprints. Lactate, pH and bicarbonate (HCO3-) concentrations were determined at rest and after each sprint on blood obtained by an antecubital vein indwelling catheter.

RESULTS:
In the PLA group, PPO in absolute values decreased significantly at the 8th and 9th of 10 sprints and in relative values, ΔPPO, decreased significantly at 6th, 8th and 9th of 10 sprints (by mean: -12±5%, P<0.006), while it remained unchanged in hydrogen rich water HRW group. Mean power, FI, time to peak power and total work showed no differences between groups. In both conditions lactate levels increased while pH and HCO3- decreased progressively as a function of the number of sprints.

CONCLUSIONS:
Two weeks of hydrogen rich water HRW intake may help to maintain PPO in repetitive sprints to exhaustion over 30 minutes.

J Sports Med Phys Fitness. 2018 May;58(5):612-621. doi: 10.23736/S0022-4707.17.06883-9. Epub 2017 Apr 26.
Effects of hydrogen rich water on prolonged intermittent exercise.
Da Ponte A1,2, Giovanelli N3,4, Nigris D5, Lazzer S3,4.
Author information
1
Department of Medical and Biological Sciences, University of Udine, Udine, Italy – dott.daponte@gmail.com.
2
School of Sports Medicine, University of Udine, Udine, Italy – dott.daponte@gmail.com.
3
Department of Medical and Biological Sciences, University of Udine, Udine, Italy.
4
School of Sport Sciences, University of Udine, Udine, Italy.
5
Department of Laboratory Medicine, University of Udine, Udine, Italy.

PMID: 28474871 DOI: 10.23736/S0022-4707.17.06883-9

Hydrogen-rich water affected blood alkalinity in physically active men

Abstract

Possible appliance of effective and safe alkalizing agent in the treatment of metabolic acidosis could be of particular interest to humans experiencing an increase in plasma acidity, such as exercise-induced acidosis.

In the present study we tested the hypothesis that the daily oral intake of 2L of hydrogen-rich water (HRW) for 14 days would increase arterial blood alkalinity at baseline and post-exercise as compared with the placebo.

This study was a randomized, double blind, placebo-controlled trial involving 52 presumably healthy physically active male volunteers. Twenty-six participants received hydrogen-rich water HRW and 26 a placebo (tap water) for 14 days.

Arterial blood pH, partial pressure for carbon dioxide (pCO2), and bicarbonates were measured at baseline and postexercise at the start (day 0) and at the end of the intervention period (day 14).

Intake of hydrogen-rich water HRW significantly increased fasting arterial blood pH by 0.04 (95% confidence interval; 0.01 – 0.08; p < 0.001), and postexercise pH by 0.07 (95% confidence interval; 0.01 – 0.10; p = 0.03) after 14 days of intervention.

Fasting bicarbonates were significantly higher in the hydrogen-rich water HRW trial after the administration regimen as compared with the preadministration (30.5 ± 1.9 mEq/L vs. 28.3 ± 2.3 mEq/L; p < 0.0001).

No volunteers withdrew before the end of the study, and no participant reported any vexatious side effects of supplementation.

These results support the hypothesis that hydrogen-rich water HRW administration is safe and may have an alkalizing effect in young physically active men.

 2014;22(1):49-60. doi: 10.1080/15438627.2013.852092.
PMID: 24392771
Hydrogen-rich water affected blood alkalinity in physically active men.
1 a Center for Health, Exercise and Sport Sciences , Stari DIF , Belgrade , Serbia.

hydrogen water , SPORTS , ANTIOXIDANTS and GUT FLORA

Abstract

Expending a considerable amount of physical energy inevitably leads to fatigue during both training and competition in football. An increasing number of experimental findings have confirmed the relationship between the generation and clearance of free radicals, fatigue, and exercise injury. Recently, hydrogen was identified as a new selective antioxidant with potential beneficial applications in sports. The present study evaluated the effect of 2-month consumption of hydrogen-rich water on the gut flora in juvenile female soccer players from Suzhou. As demonstrated by enzyme linked immunosorbent assay and 16S rDNA sequence analysis of stool samples, the consumption of hydrogen-rich water for two months significantly reduced serum malondialdehyde, interleukin-1, interleukin-6, tumour necrosis factor-α levels; then significantly increased serum superoxide dismutase, total antioxidant capacity levels and haemoglobin levels of whole blood. Furthermore, the consumption of hydrogen-rich water improved the diversity and abundance of the gut flora in athletes. All examined indices, including the shannon, sobs, ace, and chao indices, were higher in the control group than those proposed to result from hydrogen-rich water consumption prior to the trial, but these indices were all reversed and were higher than those in the controls after the 2-month intervention. Nevertheless, there were some differences in the gut flora components of these two groups before the trial, whereas there were no significant changes in the gut flora composition during the trial period. Thus, the consumption of hydrogen-rich water for two months might play a role modulating in the gut flora of athletes based on its selective antioxidant and anti-inflammatory activities. The study protocol was approved by the ethics committee of the Suzhou Sports School (approved number: SSS-EC150903).

Introduction

A number of studies have confirmed that the occurrence of exercise-induced fatigue is closely related to the level of oxidative stress in the body., The lipid peroxidative damage caused by the accumulation of free radicals in the body and the corresponding chain reaction are considered important factors responsible for decreased function of the body.,,

The antioxidant capacity of professional athletes is much higher than that of ordinary people, and athletes develop a greater ability to withstand the accumulation of free radicals and oxidative damage generated in sports. However, there are still many problems regarding protection against and alleviation and removal of the oxidative stress reaction induced by free radical accumulation in the aftermath of exercise and sports. Currently, the effects of antioxidants used in exercise practice vary, and studies have indicated that some of these substances may induce more significant skeletal muscle injury in athletes.,, Therefore, the search for safe and effective selective antioxidants has become an important research endeavour.

The selective antioxidant activity of hydrogen was first reported in 2007 by Ohsawa et al. Thereafter, a significant number of studies confirmed that hydrogen-rich water, prepared by dissolving hydrogen in water, shows selective antioxidant activity. Currently, sports science researchers are paying increasing attention to the selective antioxidant, anti-inflammatory, and anti-apoptotic effects of hydrogen and its regulation of the alkalinizing environment of the body., The beneficial protective effect of hydrogen-rich water has gradually been confirmed in both animal and human experiments.

The human symbiotic gut flora, considered the body’s “second genome”, has significant effects on human health., In recent years, studies have confirmed that imbalance of the intestinal flora is directly related to oxidative stress., The results of human experiments on athletes have shown that a greater exercise intensity results in increased oxidative stress in the body and, thus, a higher incidence of gastrointestinal stress symptoms. Therefore, in the training process, athletes should drink a sufficient amount of selective antioxidant hydrogen-rich water to regulate their gut flora, which might have a protective effect on the gastrointestinal tract and reduce stress reactions.

Participants and Methods

Participants and grouping

Thirty-eight juvenile female football players from the Suzhou Sports School showing a healthy status and absence of sports injury, without any obvious food preference, and with no significant reported intake of nutritional supplements and antibiotics for 3 months were randomly divided into two groups: the control group (n = 10) and the hydrogen-rich water treatment group (n = 28) (Figure 1). Written informed consent was obtained from each participant prior to admission to the protocol, and the study protocol was approved by the ethics committee of the Suzhou Sports School (approved number: SSS-EC150903). This study follows the Consolidated Standards of Reporting Trials (CONSORT) guidelines. During the experiment, the athletes in the hydrogen-rich water treatment group drank hydrogen-rich water in an amount equivalent to the amount of normal water they had previously consumed daily, while athletes in the control group continued to drink standard water in amounts consistent with their previous habits. The experiment lasted for 2 months. The basic information of the subjects is shown in Table 1.

An external file that holds a picture, illustration, etc. Object name is MGR-8-135-g001.jpg

Trial flow chart.

Table 1

Characteristics of all subjects

Characteristics Control group (n = 10) Hydrogen-rich water treatment group (n = 28)
Age (year) 13.7±1.06 12.18±0.86
Height (cm) 159.1±5.51 149.32±8.69
Body weight (kg) 48.97±4.56 40.15±7.56
Training period (year) 3.4±1.51 1.21±0.6

Note: Data as expressed as the mean ± SD.

Sample collection

During the experiment, the athletes followed their previous dietary and resting regimes and other aspects of their normal daily routine. The training content, exercise intensity, frequency of exercise, and other parameters were consistent with the routine training regimen of the athletes.

Blood sample test

We collected 5 mL samples of venous blood (fasting) from all 38 athletes at a predetermined time in the morning, and 100 μL of whole blood was sampled for the measurement of haematological parameters in a blood cell analyser. The remaining blood samples were centrifuged at 3000 × g for 5 minutes. The serum samples were then collected and analysed with an automatic biochemical analysis apparatus to determine hemoglobin (HGB), blood urea nitrogen (BUN) and creatine kinase (CK). Then, the serum samples were analysed for oxidative response indices (malondialdehyde (MDA), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC)) and inflammatory indices (interleukin-1 (IL-1), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-α)) using enzyme linked immunosorbent assay.

16S rDNA sequencing analysis of gut flora samples

Faecal flora samples were collected from all 38 athletes according to the specifications for stool sampling and stored at –80°C. The subsequent DNA sample extraction and 16S rDNA sequencing analysis were performed with the assistance of the Novagene Genomics Institute.

Statistical analysis

SPSS 19.0 (IBM Corp., Armonk, NY, USA) was used for statistical analysis. The results were expressed as the mean ± SD. Significant differences between the two groups were analysed with repeated measured one-way analysis of variance, and the significance level was set at P < 0.05.

Results

Effects of long-term consumption of hydrogen-rich water on routine indices of juvenile female football players

Hemoglobin

After 4 weeks, HGB decreased from 134.3 ± 12.95 g/L to 124.00 ± 17.75 g/L in the control group, while that in the hydrogen-rich water treatment group decreased from 138.74 ± 9.38 g/L to 129.59 ± 8.57 g/L. After 8 weeks, HGB increased from 124.00 ± 17.75 g/L to 131.6 ± 25.31 g/L in the control group, while that in the hydrogen-rich water treatment group increased from 129.59 ± 8.57 g/L to 139.89 ± 7.02 g/L (Figure 2A). The increasing trend and amplitude of HGB were more significant in the hydrogen-rich water treatment group (P = 0.032).

An external file that holds a picture, illustration, etc. Object name is MGR-8-135-g002.jpg

Changes in HGB, BUN and CK before and after hydrogen-rich water consumption.

Note: (A) The shift of HGB before and after hydrogen-rich water consumption; (B) The shift of BUN before and after hydrogen-rich water consumption; (C) The shift of CK before and after hydrogen-rich water consumption. HGB: Hemoglobin; BUN: blood urea nitrogen; CK: creatine kinase.

Blood urea nitrogen

After 4 weeks, the level of BUN increased from 4.73 ± 0.88 to 4.83 ± 0.81 mM in the control group, while that in the hydrogen-rich water treatment group changed from 5.19 ± 0.85 to 5.17 ± 1.03 mM. After 8 weeks, the level of BUN in the control group continued to increase, from 4.83 ± 0.81 to 5.29 ± 0.97 mM, while that in the hydrogen-rich water treatment group decreased from 5.17 ± 1.03 to 4.42 ± 0.95 mM (Figure 2B). There was a more distinct difference between the two groups (P = 0.887).

Creatine kinase

After 4 weeks, CK in the control group increased from 157.3 ± 17.37 to 171.3 ± 31.96 IU, while that in the hydrogen-rich water treatment group decreased from 149.3 ± 30.43 to 135.85 ± 24.44 IU (Figure 2C). After 8 weeks, CK decreased from 171.3 ± 31.96 to 129.7 ± 30.05 IU in the control group and from 135.85 ± 24.44 to 119.85 ± 29.93 IU in the hydrogen-rich water treatment group (P = 0.061).

Compared with HGB and BUN, CK was more sensitive to changes in the exercise load. These results suggest that the hydrogen-rich water treatment exerted a somewhat effect to enhance the whole blood HGB level of the athletes.

Effects of long-term consumption of hydrogen-rich water on oxidative response indices of juvenile female football players

Malondialdehyde

After 4 weeks, serum MDA decreased from 24.77 ± 7.32 to 16.67 ± 4.19 μM in the control group, while that decreased from 22.39 ± 6.20 to 13.80 ± 3.33 μM in the hydrogen-rich water treatment group. After 8 weeks, serum MDA changed from 16.67 ± 4.19 to 15.79 ± 3.07 μM in the control group and from13.80 ± 3.33 to 12.69 ± 1.94 μM in the hydrogen-rich water treatment group, with significant differences being observed between the two groups (P = 0.000; Figure 3A).

An external file that holds a picture, illustration, etc. Object name is MGR-8-135-g003.jpg

Changes in MDA, SOD and T-AOC before and after hydrogen-rich water consumption.

Note: (A) The shift of MDA before and after hydrogen-rich water consumption; (B) The shift of SOD before and after hydrogen-rich water consumption; (C) The shift of T-AOC before and after hydrogen-rich water consumption. MDA: Malondialdehyde; SOD: superoxide dismutase; T-AOC: total antioxidant capacity.

Superoxide dismutase

After 4 weeks, the serum SOD level increased from 10.14 ± 2.60 to 13.14 ± 2.18 U/mL in the control group and from 11.09 ± 3.17 to 14.07 ± 1.91 U/mL in the hydrogen-rich water treatment group. After 8 weeks, the serum SOD level in the control group decreased from 13.14 ± 2.18 to 13.01 ± 1.08 U/mL, while that in the hydrogen-rich water treatment group decreased from 14.07 ± 1.91 to 13.69 ± 2.10 U/mL, with significant differences between the two groups (P = 0.027; Figure 3B).

Total antioxidant capacity

After 4 weeks, serum T-AOC increased from 0.8 ± 0.08 to 1.11 ± 0.17 μM in the control group, while serum T-AOC in the hydrogen-rich water treatment group changed from 0.87 ± 0.11 to 1.17 ± 0.13 μM. After 8 weeks, T-AOC changed from 1.17 ± 0.13 to 0.84 ± 0.09 μM in the control group and from 1.17 ± 0.13 to 0.9 ± 0.13 μM in the hydrogen-rich water treatment group, with significant differences between the two groups (P = 0.004, Figure 3C).

These results suggest that the hydrogen-rich water treatment exerted an anti-oxidative effect.

Effects of long-term consumption of hydrogen-rich water on inflammatory indices of juvenile female football players

Interleukin-1

After 4 weeks, the level of serum IL-1 in the control group increased from 24.77 ± 7.32 to 32.56 ± 7.61 μM, and that in the hydrogen-rich water treatment group increased from 24.79 ± 8.94 to 29.32 ± 7.09 μM. After 8 weeks, the IL-1 level increased from 32.56 ± 7.61 to 42.94 ± 6.24 μM in the control group and from 29.32 ± 7.09 μM to 34.47 ± 6.22 μM in the hydrogen-rich water treatment group, with significant differences between the two groups (P = 0.002, Figure 4A).

An external file that holds a picture, illustration, etc. Object name is MGR-8-135-g004.jpg

Changes in IL-1, IL-6 and TNF-α before and after hydrogen-rich water consumption.

Note: (A) The shift of IL-1 before and after hydrogen-rich water consumption; (B) The shift of IL-6 before and after hydrogen-rich water consumption; (C) The shift of TNF-α before and after hydrogen-rich water consumption. IL: Interleukin; TNF-α: tumour necrosis factor alpha.

Interleukin-6

After 4 weeks, the level of serum IL-6 decreased from 19.48 ± 2.16 to 10.53 ± 1.62 ng/L in the control group and from 17.72 ± 2.1 to 8.74 ± 2.57 ng/L in the hydrogen-rich water treatment group. After 8 weeks, the level of serum IL-6 in the control group increased from 10.53 ± 1.62 ng/L to 24.88 ± 6.11 ng/L, while that in the hydrogen-rich water treatment group increased from 8.74 ± 2.57 to 12.37 ± 3.2 ng/L, with significant differences between the two groups (P = 0.000, Figure 4B).

Tumour necrosis factor-α

After 4 weeks, serum TNF-α increased from 20.04 ± 7.99 to 60.57 ± 10.09 μM in the control group and increased from 20.44 ± 7.75 to 49.46 ± 11.59 μM in the hydrogen-rich water treatment group. After 8 weeks, serum TNF-α increased from 60.57 ± 10.09 to 132.24 ± 10.46 μM in the control group and from 49.46 ± 11.59 to 107.00 ± 13.89 μM in the hydrogen-rich water treatment group, with significant differences between the two groups (P = 0.000, Figure 4C).

These results suggest that the hydrogen-rich water treatment exerted an anti-inflammatory effect.

Effects of long-term consumption of hydrogen-rich water on gut flora components of juvenile female football players

Classification by phylum

In the samples collected from the athletes after pre-treatment with hydrogen-rich water, the number of Actinobacteria in the control group was higher than that in the treatment group, and the number of Bacteroides in the control group was slightly lower than that in the hydrogen-rich water treatment group. Moreover, the number of Clostridia in the control group was slightly higher than that in the hydrogen-rich water treatment group. However, there were no significant differences in the numbers of these bacterial groups after 2 months of hydrogen-rich water treatment.

Classification by class

In samples collected from the athletes after pre-treatment with hydrogen-rich water, the number of Actinobacteria in the control group was higher than that in the hydrogen-rich water treatment group, while the number of Bacteroides in the control group was slightly lower than that in the hydrogen-rich water treatment group, and the numbers of ClostridiaCoriobacteria, and Erysipelotrichia in the control group were higher than those in the hydrogen-rich water treatment group. However, there was no significant difference in the numbers of these bacterial groups after 2 months of hydrogen-rich water treatment.

Classification by order

In samples collected from the athletes after pre-treatment with hydrogen-rich water, the number of Actinobacteria in the control group was higher than that in the hydrogen-rich water treatment group, while the number of Bacteroides in the control group was slightly lower than that in the hydrogen-rich water treatment group, and the numbers of Clostridia and Coriobacteria in the control group were higher than those in the hydrogen-rich water treatment group. The number of Erysipelotrichia in the control group was higher than that in the hydrogen-rich water treatment group, although this difference was not significant. Nevertheless, there were no significant differences in the numbers of related bacteria after 2 months of hydrogen-rich water treatment.

Classification by family

In samples collected from the athletes after pre-treatment with hydrogen-rich water, the numbers of Acidaminococcaceae, Bacteriodaceae, Bifidobacteriaceae, Coriobacteriaceae, Desulforibrionaceae, Erysipelotrichaceae and Ruminococcaceae were higher than those in the hydrogen-rich water treatment group, with differences being observed in the number of Bifidobacteriaceae, Ruminococcaceae, Coriobacteriaceae and Erysipelotrichaceae. There was no difference in the number of Lachnospiraceae between the two groups. The number of Prevotellaceae in the hydrogen-rich water treatment group was higher than that in the control group. However, there were no significant differences in the number of these bacterial groups after 2 months of hydrogen-rich water treatment.

Classification by genus

In samples collected from the athletes after pre-treatment with hydrogen-rich water, the numbers of Bifidobacterium and Oscillibacter in the control group were higher than those in the hydrogen-rich water treatment group, with a difference being observed in the number of Bifidobacteriaceae. The number of Prevotella in the hydrogen-rich water treatment group was higher than that in the control group, although this difference was not significant. There were no significant differences in the number of these bacterial groups after 2 months of hydrogen-rich water treatment.

Effects of long-term consumption of hydrogen-rich water on gut flora diversity and abundance in juvenile female football players

The actual number of operational taxonomic units (sobs) and the ace, chao and shannon indices were determined, and then a dilution curve was drawn. The recorded changes indicated that the sobs, ace, chao and shannon indices of the control group were all higher than those of the hydrogen-rich water treatment group, suggesting that the abundance and diversity of the gut flora in the control group were higher than those in the hydrogen-rich water treatment group.

After 1 month of hydrogen-rich water treatment, the sobs, ace, and chao indices were higher in the hydrogen-rich water treatment group than those in the control group. The trend was slightly reversed, indicating that the abundance of gut flora was higher in the hydrogen-rich water treatment group than in the control group. The shannon index of the treatment group at that time was essentially the same as that in the control group, indicating that treatment with hydrogen-rich water could also enhance the diversity of the gut flora. After 2 months of hydrogen-rich water treatment, the sobs, ace, chao and shannon indices were much higher than those in the control group (P = 0.479, P = 0.710, P = 0.369, P = 0.369). Indicating that treatment with hydrogen-rich water can enhance the gut flora abundance and diversity of the gut flora (Figure 5).

An external file that holds a picture, illustration, etc. Object name is MGR-8-135-g005.jpg

Changes in gut flora diversity and abundance before and after hydrogen-rich water consumption.

Note: (A) The shift of sobs before and after hydrogenrich water consumption; (B) The shift of ace index before and after hydrogen-rich water consumption; (C) The shift of chao index before and after hydrogen-rich water consumption; (D) The shift of shannon index before and after hydrogen-rich water consumption.

Discussion

The existing experimental and clinical studies have shown that animals or humans need only to breathe hydrogen or drink or inject hydrogen-rich water to protect the heart, brain, liver, kidney, lung, and small intestine from ischaemia/reperfusion oxidative injury or inflammatory injury after cardiac organ transplantation.,

The potential biological effects of hydrogen in sports have drawn much attention from researchers in sports science. The beneficial protective effects of hydrogen-rich water on the body have been gradually confirmed in both animal and human experiments. Ostojic summarized the current applications of hydrogen in the field of sports, emphasizing that hydrogen

1) can effectively remove a large number of harmful free radicals generated through movement, thus enhancing the antioxidant capacity;

2) is an effective alkalizing agent in the internal environment that can effectively inhibit blood acidification induced by lactic acid accumulation in sports; and

3) is an important gas signalling molecule that can participate in physiological regulatory processes such as anti-inflammatory, anti-apoptotic, and anti-autophagy processes., This regulation does not involve the same signalling pathway as antioxidative stress.

Analysis of the effect of long-term consumption of hydrogen-rich water on routine indices of juvenile female football players

HGB is one of the classic indicators reflecting the level of endurance exercise. The shift of HGB after 4 weeks was caused by increases in the amount or intensity of exercise and seasonal factors during winter training. The HGB level began to gradually increase, suggesting that the athletes had adapted well to the winter training load. The increase in the HGB level was higher overall in the hydrogen-rich water treatment group suggested that long-term hydrogen-rich water treatment could help increase the HGB level.

Urea nitrogen is the final product of protein metabolism. The participation of protein catabolism in the energy supply is enhanced during long-term and high-intensity exercise, thus increasing the amount of urea nitrogen in the blood and urine with increased decomposition of proteins and amino acids. The shift of the BUN level of all 38 athletes increased slightly due to winter training and seasonal factors. After 8 weeks, the decrease in the serum urea nitrogen level and the increase in the HGB level indicated that long-term hydrogen-rich water treatment has beneficial effects on the physiological functions of athletes.

CK is the key enzyme in energy metabolism in skeletal muscle cells, whose activity directly affects the short-term maximum intensity of the exercise capacity. After a high-intensity muscle load, muscle soreness and serum CK levels are highly and positively correlated. Clarke et al. found that the level of CK in the serum of professional rugby athletes is markedly high. CK is an important index reflecting the exercise load, particularly that suffered by the skeletal muscle. Thus, CK could indirectly reflect the levels of injury and active repair of the skeletal muscle ultrastructure.

After 8 weeks, the level of serum CK in both the control and hydrogen-rich water treatment groups continued to decrease.

Analysis of the effect of long-term consumption of hydrogen-rich water on the serum oxidative response of juvenile female football players

Tsubone et al. compared the effects of drinking hydrogen-rich water on the levels of oxidative stress and antioxidant metabolites in the serum of British thoroughbred horses and found that hydrogen-rich water treatment had a beneficial antioxidant effect. Aoki et al. conducted studies on football players and showed that drinking hydrogen-rich water for 1 week could reduce exercise fatigue and lactic acid accumulation after exercise but had no significant effect on the oxidative response index.

Li et al. showed that hydrogen-rich water could significantly prolong the duration of exercise before exhaustion in rats and improve their exercise capacity, indicating a significant anti-fatigue effect.

Zhao and Zhang showed that supplementation of hydrogen-rich water at different times before, during, and after exercise exerted significant protective effects against oxidative stress injury in swimming athletes during high-intensity exercise. This supplementation of hydrogen-rich water can reduce the production of excessive free radicals and enhance the activity of antioxidant enzymes and the antioxidant capacity of the body, thereby promoting physical recovery after high-intensity exercise. Hu and Zhang showed that high-intensity intermittent training increases the concentration of O2 , •OH and H2O2. Hydrogen-rich water can significantly enhance the body’s inhibition of O2  and •OH, showing a higher rate of •OH inhibition, fully reflecting its selective antioxidant effect.

Li et al. found that hydrogen-rich water treatment could effectively reduce oxidative stress injury induced in skeletal muscle by severe exercise while improving the muscle ultrastructure.

Wang et al. reported that hydrogen-rich water treatment could up-regulate the expression of SIRT3, enhance the activity of antioxidant enzymes, and reduce the inflammatory response after centrifugal exercise.

MDA is one of the classic indicators reflecting the level of lipid peroxidation. After 8 weeks, the difference of serum MDA between the two groups was significant, it suggested that long-term hydrogen-rich water treatment exerts an antioxidant effect.

SOD is one of the classic indicators reflecting the free radical-scavenging antioxidant capacity. The SOD levels of both the control and hydrogen-rich water treatment groups slightly increased after 4 weeks. And the mean serum SOD level of the hydrogen-rich water treatment group was consistent higher than the control group after 8 weeks.

Serum antioxidant substances can be divided into the enzymatic antioxidant system and the non-enzymatic antioxidant system. The enzymatic antioxidant system mainly involves substances such as SOD, glutathione peroxidase, glutathione reductase, and catalase. The non-enzymatic antioxidant system mainly involves water-soluble substances, such as vitamin C, bilirubin, fat-soluble vitamin E, coenzyme Q, carotenoids, and flavonoid antioxidants. In terms of their function, serum antioxidant substances can be divided into three types: preventive antioxidants; capture-type antioxidants; and repair and regeneration antioxidants. The total antioxidant capacity represents the sum of the above substances and functions.

The observed changes in serum T-AOC suggested that 4 weeks of hydrogen-rich water treatment group indeed improved the free radical-scavenging ability of antioxidants. These results suggest that long-term hydrogen-rich water treatment exerts an antioxidant effect.

Analysis of the effect of long-term consumption of hydrogen-rich water on serum inflammatory indices of juvenile female football players

Inflammatory factors will increase, and inflammation will intensify during exercise due to increases in energy consumption, free radicals, and intensification of oxidative stress. However, there are three anti-inflammatory mechanisms that may be deployed in the course of exercise.

1) Exercise can increase energy consumption, thereby reducing visceral fat volume and alleviating the infiltration of fat into inflammatory lymphocytes.

2) Exercise can effectively increase the production and release of muscle-derived anti-inflammatory cytokines during skeletal muscle contraction; skeletal muscle accounts for 35–45% of the total body weight, and the regulatory effects of this major endocrine organ on human homeostasis cannot be ignored.

3) Exercise can effectively reduce toll-like receptor expression on the membrane surface of monocytes and macrophages, which may lead to a decreased downstream response, including reduced secretion of inflammatory agents, decreased expression of compatibility complexes in major organs, and decreases in co-stimulatory Mecules.,

These three effects can ensure that the levels of inflammatory agent factors in athletes participating in strenuous exercise will not increase and may even decrease. However, the effect of oxidative stress on the body will not be weakened. After 8 weeks of hydrogen-rich water treatment, the levels of IL-1, IL-6 and TNF-α in the hydrogen-rich water treatment group were lower than those in the control group and with significant differences between the two groups. Compared with the abovementioned changes in the oxidative stress indices, long-term hydrogen-rich water treatment showed a stronger anti-inflammatory effect in addition to an antioxidant effect.

Analysis of the effect of long-term consumption of hydrogen-rich water on gut flora components of juvenile female football players

Analysis of the structural components of the gut flora at different levels of classification in the two groups showed some differences between the two groups at different stages of the experiment. However, there were no significant changes in the structural components of flora between the two groups in terms of the oxidative response and the anti-inflammatory effect. These results suggest that two months of hydrogen-rich water treatment did not significantly change the structural components of the gut flora of the juvenile female football players. Differences in the composition of the flora between the two groups are an expected result of differences in age, particularly regarding the number of training years.

In 2007, Ohsawa et al. suggested that the selective antioxidant activity of hydrogen-rich water, and particularly its selective elimination of •OH, is superior to that of traditional antioxidants, while its overall antioxidant capacity is much lower than that of traditional antioxidants. Therefore, the effect of 2 months of hydrogen-rich water treatment on the regulation of gut flora was also much lower than that of established supplements such as resveratrol, grape antioxidant dietary fibre, selenium supplements, anthocyanin, and pomegranate peel polyphenols.,,,,,

Analysis of the effect of long-term consumption of hydrogen-rich water on gut flora diversity and abundance in juvenile female football players

As a complex and variable micro-ecological system, the gut flora is constantly undergoing changes in its dynamic equilibrium. The richness and diversity of its components are important indicators of the health of this ecological system. The richness of the gut flora in patients with inflammatory bowel disorder is decreased in elderly and obese individuals. Le Chatelier et al. compared the composition of the gut flora of 123 non-obese and 169 obese Danes and found that the gut flora richness of these two groups differed, as did the number of genes in their gut flora. Individuals with lower gut flora richness were found to exhibit more significant obesity characteristics, insulin resistance, and lipid metabolic disorders as well as more severe inflammatory phenotypes.,

As a strong stressor, long-term and high-intensity professional sports training eventually has a corresponding impact on the gut flora. Clarke et al. found that professional rugby athletes exhibited a more abundant gut flora in their intestines compared with control groups of individuals with a body mass index (BMI) < 25 or BMI > 28. In samples from the professional rugby athletes, the total microorganisms identified came from 22 phyla, 68 families, and 113 genera. In the control group with a BMI < 25, a total of 11 phyla, 33 families, and 65 genera of microorganisms were detected, whereas the microorganisms in the control group with a BMI > 28 came from 9 phyla, 33 families, and 61 genera. The richness and diversity of the gut flora were lowest in obese individuals, while the professional athletes exhibited the highest richness and diversity levels.

Before treatment with hydrogen-rich water, the richness and diversity of the gut flora were higher in the control group (3.4 ± 1.51 years of training) than in the treatment group (1.21 ± 0.6 years of training), and the training period was the main factor leading to this difference. Individuals who had a longer training period exhibited a higher richness and diversity in their gut flora; this trend is consistent with the results of Clarke et al.

After 4 weeks of treatment with hydrogen-rich water, the trend was slightly reversed. The richness and diversity of the gut flora were higher in athletes who had a shorter training period than those who had a longer training period. This finding indicated that drinking hydrogen-rich water for a long period of time may plays an important role in enhancing the richness and diversity of the gut flora. At the same time, the levels of serum MDA, IL-1, IL-6 and TNF-α decreased in the treatment group, and the SOD, T-AOC level increased. Such changes are closely related to changes in the richness and diversity of the gut flora.

After 8 weeks of treatment with hydrogen-rich water, the richness and diversity of the gut flora were still higher in athletes who had a shorter training period than in control individuals who had a longer training. Additionally, the serum levels of MDA, IL-1, IL-6 and TNF-α decreased, and the levels of HGB SOD, T-AOC level increased to various degrees in the hydrogen-rich water treatment group. The trend of favourable changes of motor function indices, the oxidative response index, and inflammatory factor indices were almost consistent with the changes in the richness and diversity of the gut flora.

The above results showed that long-term consumption of hydrogen-rich water not only exerts certain antioxidant and anti-inflammatory effects but also enhances the diversity and abundance of the gut flora of the subjects.

Footnotes

Funding: The study was supported by the National Basic Research Project of China (973 Program), No. 2012CB518200 (to ZCG), the General Program of the Natural Science Foundation of China, No. 81371232, 81573251 (to ZCG), and the Special Key Programs for Science and Technology of China, No. 2012ZX09102301-016 and 2014ZX09J14107-05B (to ZCG).

Conflicts of interest

There is no conflict of interest.

Financial support

The study was supported by The National Basic Research Project of China (973 Program), No. 2012CB518200, the General Program of the Natural Science Foundation of China, No. 81371232, 81573251, and the Special Key Programs for Science and Technology of China, No. 2012ZX09102301-016, 2014ZX09J14107-05B.

Institutional review board statement

The institutional review board approval of Suzhou Sports School was obtained for this study.

Declaration of participant consent

The authors certify that they have obtained participant consent forms. In the form, participants have given their consent for their images andother clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Reporting statement

This study follows the Consolidated Standards of Reporting Trials (CONSORT) guidelines.

Biostatistics statement

The statistical methods of this study were reviewed by the biostatistician of the State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China.

Copyright license agreement

The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement

Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check

Checked twice by iThenticate.

Peer review

Externally peer reviewed.

Logo of mgr

Link to Publisher's site
. 2018 Oct-Dec; 8(4): 135–143.
Published online 2019 Jan 9. doi: 10.4103/2045-9912.248263
PMCID: PMC6352569
PMID: 30713665
Effects of the long-term consumption of hydrogen-rich water on the antioxidant activity and the gut flora in female juvenile soccer players from Suzhou, China
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

1. Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol Respir Environ Exerc Physiol. 1978;45:927–932. [PubMed[]
2. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107:1198–1205. [PubMed[]
3. Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic Biol Med. 2011;51:942–950. [PubMed[]
4. Cobley JN, McHardy H, Morton JP, Nikolaidis MG, Close GL. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radic Biol Med. 2015;84:65–76. [PubMed[]
5. Pingitore A, Pereira Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31:916–922. [PubMed[]
6. Slattery K, Bentley D, Coutts AJ. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015;45:453–471. [PubMed[]
7. Mankowski RT, Anton SD, Buford TW, Leeuwenburgh C. Dietary antioxidants as modifiers of physiologic adaptations to exercise. Med Sci Sports Exerc. 2015;47:1857–1868. [PMC free article][PubMed[]
8. McAnulty LS, Miller LE, Hosick PA, Utter AC, Quindry JC, McAnulty SR. Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Appl Physiol Nutr Metab. 2013;38:760–765. [PubMed[]
9. Carrera-Quintanar L, Funes L, Vicente-Salar N, et al. Effect of polyphenol supplements on redox status of blood cells: a randomized controlled exercise training trial. Eur J Nutr. 2015;54:1081–1093. [PubMed[]
10. Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–694. [PubMed[]
11. Zhao L. Genomics: The tale of our other genome. Nature. 2010;465:879–880. [PubMed[]
12. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–2379. [PubMed[]
13. Espley RV, Butts CA, Laing WA, et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr. 2014;144:146–154. [PubMed[]
14. Placha I, Chrastinova L, Laukova A, et al. Effect of thyme oil on small intestine integrity and antioxidant status, phagocytic activity and gastrointestininal microbita in rabbits. Acta Vet Hung. 2013;61:197–208. [PubMed[]
15. Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010;44:971–982. [PubMed[]
16. Noda M, Fujita K, Ohsawa I, Ito M, Ohno K. Multiple effects of Mecular hydrogen and its distinct mechanism. J Neurol Disord. 2014;2:1–8. []
17. Ostojic SM, Stojanovic MD. Hydrogen-rich water affected blood alkalinity in physically active men. Res Sports Med. 2014;22:49–60. [PubMed[]
18. Ostojic SM. Molecular hydrogen in sports medicine: new therapeutic perspectives. Int J Sports Med. 2015;36:273–279. [PubMed[]
19. Tsubone H, Hanafusa M, Endo M, et al. Effect of treadmill exercise and hydrogen-rich water intake on serum oxidative and anti-oxidative metabolites in serum of thoroughbred horses. J Equine Sci. 2013;24:1–8. [PMC free article] [PubMed[]
20. Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res. 2012;2:12.[PMC free article] [PubMed[]
21. Li A, Zhang L, Zhou J, Sun X. Effects of supplementation of hydrogen-rich water on the oxidative stress-induced damage in skeletal muscle after acute exhaustive exercise. Zhongguo Yundong Yixue. 2011;30:452–455. []
22. Zhao YY, Zhang L. Master Dissertation. Suzhou: Schoow University; 2014. The influence of drinking hydrogen-rich water at different phase and high-intensity exercise to swimming athletes in free radical metabolism. []
23. Hu J, Zhang L. Master Dissertation. Suzhou: Schoow University; 2014. A comparative research of the influence of different antioxidants on antioxidant system about the short distance swimmer. []
24. Li C, Li CX, Pang L, Wu L. Hydrogen-rich water on oxidative stress injury in rat skeletal muscle after exhaustive exercise was repeated. Taishan Yixueyuan Xuebao. 2015;36:371–375. []
25. Wang L, Liu ZQ, Hou YL, Ge YJ. Hydrogen-rich water inhibits mitochondrial oxidative stress and inflammation in the skeletal muscle after eccentric exercise. Zhongguo Zuzhi Gongcheng Yanjiu. 2015;19:4682–4687. []
26. Ji LL, Zhang Y. Antioxidant and anti-inflammatory effects of exercise: role of redox signaling. Free Radic Res. 2014;48:3–11. [PubMed[]
27. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607–615. [PubMed[]
28. Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct. 2014;5:1241–1249. [PubMed[]
29. Wang B, Sun J, Li X, et al. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity. Nutr Res. 2013;33:971–981. [PubMed[]
30. Jose Pozuelo M, Agis-Torres A, Hervert-Hernandez D, et al. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. J Food Sci. 2012;77:H59–H62. [PubMed[]
31. Kasaikina MV, Kravtsova MA, Lee BC, et al. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J. 2011;25:2492–2499. [PMC free article] [PubMed[]
32. Jakobsdottir G, Blanco N, Xu J, et al. Formation of short-chain Fatty acids, excretion of anthocyanins, and microbial diversity in rats fed blackcurrants, blackberries, and raspberries. J Nutr Metab. 2013;2013:202534. [PMC free article] [PubMed[]
33. Neyrinck AM, Van Hee VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr. 2013;109:802–809. [PubMed[]
34. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. [PubMed[]
35. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904. [PubMed[]
36. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. [PubMed[]
37. Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920. [PubMed[]

Articles from Medical Gas Research are provided here courtesy of Wolters Kluwer — Medknow Publications

molecular hydrogen water for patients with pressure ulcer – effects on normal human SKIN WOUNDS

 
Pressure ulcer (PU) is common in immobile elderly patients, and there are some research works to investigate a preventive and curative method, but not to find sufficient effectiveness. The aim of this study is to clarify the clinical effectiveness on wound healing in patients with pressure ulcer PU by molecular hydrogen-dissolved in water (HW) intake via tube-feeding (TF). Furthermore, normal human dermal fibroblasts OUMS-36 and normal human epidermis-derived cell line HaCaT keratinocytes were examined in vitro to explore the mechanisms relating to whether molecular hydrogen plays a role in wound-healing at the cellular level.

22 severely hospitalized elderly Japanese patients with pressure ulcer PU were recruited in the present study, and their ages ranged from 71.0 to 101.0 (86.7 ± 8.2) years old, 12 male and 10 female patients, all suffering from eating disorder and bedridden syndrome as the secondary results of various underlying diseases. All patients received routine care treatments for pressure ulcer PU in combination with molecular hydrogen water HW intake via TF for 600 mL per day, in place of partial moisture replenishment. On the other hand, HW was prepared with a hydrogen-bubbling apparatus which produces molecular hydrogen water HW with 0.8-1.3 ppm of dissolved hydrogen concentration (DH) and −602 mV to −583 mV of oxidation-reduction potential (ORP), in contrast to reversed osmotic ultra-pure water (RW), as the reference, with DH of < 0.018 ppm and ORP of +184 mV for use in the in vitro experimental research. In in vitro experiments, OUMS-36 fibroblasts and HaCaT keratinocytes were respectively cultured in medium prepared with molecular hydrogen water  HW and/or reversed osmotic ultra-pure water RW. Immunostain was used for detecting type-I collagen reconstruction in OUMS-36 cells. And intracellular reactive oxygen species (ROS) were quantified by NBT assay, and cell viability of HaCaT cells was examined by WST-1 assay, respectively.

Results

22 patients were retrospectively divided into an effective group (EG, n = 12) and a less effective group (LG, n = 10) according to the outcomes of endpoint evaluation and the healing criteria. Pressure Ulcers  hospitalized days in EffectiveGroup were significantly shorter than in LessseffectiveGroup (113.3 days vs. 155.4 days, p < 0.05), and the shortening rate was approximately 28.1%. Either in EG or in LG, the reducing changes (EG: 91.4%; LG: 48.6%) of wound size represented statistically significant difference versus before molecular hydrogen water HW intake (p < 0.05, p < 0.001). The in vitro data demonstrate that intracellular ROS as quantified by NBT assay was diminished by molecular hydrogen water HW, but not by reverse osmosys water ultraviolet-A (UVA)-irradiated HaCaT cells. Nuclear condensation and fragmentation had occurred for UVA-irradiated HaCaT cells in reverse osmosis water RW, but scarcely occurred in molecular hydrogen water HW as demonstrated by Hoechst 33342 staining. Besides, under UVA-irradiation, either the mitochondrial reducing ability of HaCaT cells or the type-I collagen construction in OUMS-36 cells deteriorated in reverse osmosis water  RW-prepared culture medium, but was retained in molecular hydrogen water HW-prepared culture medium as shown by WST-1 assay or immunostain, respectively.

Conclusions

molecular hydrogen water HW intake via TF was demonstrated, for severely hospitalized elderly patients with PressureUlcers, to execute wound size reduction and early recovery, which potently ensue from either type-I collagen construction in dermal fibroblasts or the promoted mitochondrial reducing ability and ROS repression in epidermal keratinocytes as shown by immunostain or NBT and WST-1 assays, respectively.

Introduction

PressureUlcer is common in the immobile elderly or other immobile patients suffering from diseases such as spinal cord injury, amyotrophic lateral sclerosis, multiple sclerosis, and muscular dystrophy, etc. Furthermore, aged and weak bedridden patients belong to a high risk population for Pressure Ulcers [1]. It is estimated that there are over one million elderly people who are suffering from the skin peculiarity and are facing the risk factors of Pressure Ulcers in USA [2]. Fundamentally, it is usually pointed out that social, psychological and financial expenses for Pressure Ulcers are immeasurable, patients and their families as well as health care providers are always receiving the mental strain [3].

For Pressure Ulcers , it is a primary research task to explore a cheap but effective preventive and curative method. Although various methods for prevention and treatment have been developed, they are far from sufficiently succeeding. While slightly delayed, basic studies are seen to steadily proceed in the same way as the clinical study. As the basic studies for wound healing, a lot of researchers are focusing on skin-constructing proteins such as collagen, elastin, laminin and fibronectin, and on metabolic activity and proliferating ability of dermal fibroblasts [45].

In relation to this matter, we had confirmed the fact that molecular hydrogen-dissolved in water HW, as an external use for skin, can promote the construction of the type-I collagen in fibroblastic cells of dermis [678]. We prepared molecular hydrogen-dissolved in water HW with a hydrogen-bubbling apparatus, exhibited a DH of 1.13 ppm and an ORP of −741 mV, in contrast a DH of < 0.01 ppm and an ORP of +150 mV for normal water [6]. Simultaneously, normal human dermal fibroblasts OUMS-36 and normal human epidermis-derived keratinocytes HaCaT were cultured using an immunostain, in addition, WST-8 and DAPI stains were conducted to examine the cytoprotective effects of molecular hydrogen-dissolved in water HW against UVA-ray irradiation. Six Japanese subjects were enrolled in a trial of molecular hydrogen water HW-bathing (DH, 0.2-0.4 ppm) every day for 3 months. The results obtained showed that molecular hydrogen water  HW-bathing significantly improved wrinkles on the back of the neck in four subjects on 90th day as compared to day 0. Thus the conclusion was achieved, in which molecular hydrogen water  HW can serve as a daily skin care routine to repress UVA-induced skin damages by ROS-scavenging and promotion of type-I collagen synthesis in dermis. On the other hand, many basic research studies demonstrated that molecular hydrogen water HW is widely applied to various diseases, as an oral intake for absorbing via the gastrointestinal tract [91011121314]. The researches obviously suggest that whether using a bathing type or oral intake type of treatment,molecular hydrogen water HW is still an effective method to repair the skin and scavenge the ROS [151617].

We theorized that a routine care treatment in combination with molecular hydrogen water  HW intake via TF for patients with PressureUlcers may improve wound healing and maintain a better health condition than before. The purpose of this study is to clarify the clinical effectiveness of wound healing for patients with PressureUlcers by means of an oral intake of molecular hydrogen water  HW via TF. Furthermore, OUMS-36 cells and HaCaT cells were examined to analyze the mechanisms relating to whether molecular hydrogen water  plays a role in wound healing at the cellular level, in vitro.

Methods

Clinical materials

Patients

Medical record data that were analyzed for this study were obtained from twenty-two elderly Japanese patients with Pressure Ulcers who were hospitalized and institutionalized in Kobayashi Hospital, Fukuyama City, Hiroshima Prefecture, Japan, which is a general hospital attached to a mixed long-term care facility. This study was approved by the Ethics Committee of Kobayashi Hospital.

The ages of PressureUlcers patients who we treated in this study ranged from 71.0 to 101.0 (86.7 ± 8.2) years old, and ten patients were women. On the time of admission, they had suffered from one or multiple diseases and complications, and almost all of them were bedridden elderly people at a high risk of PressureUlcers development, and all of them could not eat without other people’s aid. On the time of admission or during the hospitalization, all patients had been or were gradually appearing symptoms of PressureUlcers.

The types of diseases and complications in these patients, not only included eating disorder but 90% also showed the prevalence of being in the aged period, and 100% had impaired mobility. However, it must be emphasized that PressureUlcers incidence of new onset in Kobayashi Hospital remained approximately 2.10% in 2010–2011, persisted in low level. Because it was reported that average PressureUlcer incidence was 2.43% in a nationwide survey executed by Japanese Society of Pressure Ulcers [18].

Twenty-two patients were retrospectively grouped into EG (effective group, n = 12) and LG (less effective group, n = 10) according to the outcomes of endpoint evaluation and the healing criteria. Details with regard to the discharge from hospital for whether cure or not were analyzed, and baseline data were summarized (Table 1). In data processing, results of all patients were classified as stage I-IV according to the Guideline in 2009 of EPUAP (European Pressure Ulcer Advisory Panel) & NPUAP (National Pressure Ulcer Advisory Panel) that is used as assessment for the severity of PressureUlcers. Coincidentally, all patients in this study belonged to stage II or III.

Table 1

Characteristics of baseline data of PressureUlcers patients in two groups

Item

Effective group (EG)

Less effective group (LG)

Number of patients

12

10

Age (mean ± SD) at onset

87.9 ± 9.0

85.5 ± 7.3

  range

71.0-101.0

73.0-98.0

Gender (male/female)

4/8

8/2

Admission diagnosis

  PU

8

7

  Tumor

0

1

  Pneumonia

4

0

  COPD

0

1

  CIS

0

1

Hospitalized days (mean ± SD)

113.3 ± 89.6

155.4 ± 92.6

  range

32-379

63-335

DESIGN-Rating (mean ± SD) at onset

14.0 ± 5.4

12.7 ± 3.3

Wound size (mean ± SD) at onset

6.9 ± 0.9 cm2

6.3 ± 0.9 cm2

Locations*

  Total

16

12

  Back

3

0

  Sacrum

3

5

  Buttocks

3

2

  Ilium

1

3

  Greater trochanter

2

1

  Thigh

1

0

  Knee

1

0

  Heel

1

1

  Toes

1

0

Stages at onset (number of locations*)

  Stage II

6

4

  Stage III

10

8

Abbreviations: PU pressure ulcer, COPD chronic obstructive pulmonary disease, CIS cerebral infarction sequela, DESIGN-Ratingdepth, exudate, size, inflammation/infection, granulation, necrotic tissue.

*Some patients had multiple locations for pressure ulcers.

Clinical care treatments

Hospitalized routine care treatment

The treatment focused on preventing PressureUlcers from getting worse and on restoring healthy skin. According to the routine care treatments for all patients, nonsurgical therapies were selected, such as ointment, gauze dressing, wrapping, and bed-pad were used after washing by the acidic water disinfection. The skin care, pressure relief and nutritional support were aggressively used as a part of this care treatment [13]. The main care steps to treat PressureUlcers included:

  1. a.

    Managing the tissue load.

  2. b.

    Keeping the ulcer area clean and covered, and not letting it dry out.

  3. c.

    Body-position changes at least every 2 hours if the patient is confined to a bed, or as often as every 15 min if sitting in a wheelchair.

  4. d.

    To achieve positive nutritional nitrogen balance, patient consumed by TF approximately 30 to 35 calories per kg per day and 1.25 to 1.50 g of protein per kg per day.

Preparation for molecular hydrogen water HW

HW molecular hydrogen water was prepared with a molecular hydrogen-bubbling apparatus which consists mainly of a water supply section for manufacturing reverse osmosis water RW with less 0.018 ppm of DH and +184 mV of ORP, and molecular hydrogen water  HW with 0.8-1.3 ppm of DH and −602 mV to −583 mV of ORP. For comparing molecular hydrogen water  HW with reverse osmosys water RW, the water characteristic parameters were measured with the different dilution rates (Table 2, Figures 1 and 2). It must be emphasized that some stable characteristic indicators and the proprieties for innocuity and harmlessness of molecular hydrogen water were obtained from several separated in vivo and human experiments which we had reported [1920212223]. Meanwhile, via tube-feeding, Pressure Ulcers  patients were enforced to intake molecular hydrogen  water HW of 600 mL per day, in the morning and afternoon for approximately one hour, respectively, immediately after molecular hydrogen  water HW was manufactured everytime.

Table 2

Characteristic parameters obtained from hydrogen-dissolved water vs. reversed osmotic ultra-pure water

DH(ppm)

DO(ppm)

ORP (mV)

pH

Water temperature (°C)

Hydrogen-dissolved water (HW)

0.80-1.30

6.91

−602

7.40

24.1

Reversed osmotic ultra-pure water (RW)

< 0.018

8.26

+184

7.37

24.2

Abbreviations: DHdissolved hydrogen concentration, DOdissolved oxygen concentration, ORPoxidation-reduction potential.

Figure 1

Measurement results of diluting molecular hydrogen  water HW with reverse osmosys water RW. The dilution rates are showed as Figure 1. Figures 1a and –b show the ever-increasing tendencies on DO (dissolved oxygen concentration) and ORP (oxidation-reduction potential). Meanwhile, as shown by Figures 1c and –d, DH (dissolved hydrogen concentration) shows the ever-decreasing tendency which indicates the dissolved hydrogen in the hydrogen water was evaporated slowly by mixing with normal regular water. On the other hand, both molecular hydrogen  water HW with reverse osmosys water RW have been holding the temperature range of 23.2-24.1°C and pH 7.37-7.48 no matter from 1 to 11-fold dilution rate.

Clinical evaluations

The evaluative indices for clinical therapeutic effects on PRESSURE ULCERS consisted of the hospitalized days, wound size, classifications of PressureUlcers-stage and DESIGN- rating.

Hospitalized days

Because the increased length of hospitalized stay is an important index for a PressureUlcers patient of QOL (Quality of Life), the days from admission to discharge for twenty-two patients were counted.

Wound size

For obtaining precise objective information and monitoring the healing degree about wound, the medical-care staff measured the size, depth and area [24], utilized photography and diagrams for recording the shape and outline of the wound.

Classifications of PressureUlcers-stages

According to a well-known Panel Guideline established by EPUAP and NPUAP in 2009 [3], stage II includes the partial thickness for loss of skin involving epidermis, dermis or both. The ulcer is superficial and presents clinically as an abrasion or blister, but is not deeper than the dermis. On the other hand, stage III involves the full depth of the skin, and may extend into the subcutaneous tissue layer which has a relatively poor blood supply and can be difficult to heal [2526].

DESIGN-rating

DESIGN was an absolute evaluation tool and consumed as a clinical indicator to assess the quality of medical care. But, its score could not be compared the severity of PressureUlcers among different patients and their various ulcers. Because of this, the DESIGN-rating was invented to use as a simple and easy assessment of PressureUlcers [2728]. In our study, the DESIGN-rating score of every patient was recorded by the medical-care staff, at least once monthly.

In vitro experiments

Materials and methods

Normal human dermal fibroblastic cells OUMS-36

OUMS-36 cells were cultivated for 18 hours in molecular hydrogen  water HW or reverse osmosys water RW-prepared Dulbecco’s modified Eagle’s medium (DMEM; Nissui Pharmaceutical Co. Ltd., Tokyo) supplemented with 10% FCS (fetal calf serum) (GIBCO) in a CO2incubator to be kept at 37°C and pH 7.1-7.4 in a moistened atmosphere of 5% CO2. The spent medium was replaced by the fresh molecular hydrogen  water HW or reverse osmosys water RW-prepared culture medium, and was at once irradiated with UVA ray at doses of 12 or 18 J/cm2, corresponding to the normal dose range for the human daily life. The resultant cells were stained for the nuclei with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, Ultracruz Mounting Medium, sc-24941, Santa Cruz Biotechnology Inc., Santa Cruz, CA), and observed for type-I collagen reconstruction by immunostain using the first antibody directed against type-I collagen and the secondary antibody conjugated with FITC (fluorescein isothiocyanate), as observed with a fluorescence microscope (ECLIPSE E600, Nikon Corp., Tokyo) as previously described [6].

Normal human epidermis-derived keratinocytes HaCaT

HaCaT cells were similarly cultivated in molecular hydrogen  water HW or reverse osmosys water RW-prepared DMEM supplemented with 10% FCS (GIBCO), and similarly UVA-irradiated. The resultant cells were examined for cell viability by WST-1 methods using (phenyl)-5-(2-disulfophenyl)-2H-tetrazolium, monosodium salt as a redox indicator, and for ROS such as superoxide anion radicals by NBT (nitro blue tetrazorium) assay as previously described [6].

Statistical analysis

Either clinical study or in vitro research, the Student’s t-test was used to compare the difference in means ± SD between the control and treated groups using a Microsoft Office Excel 2010 software (Microsoft, Albuquerque, NM, USA) or a software package SPSS 11.0 (SPSS inc., Chicago, IL, USA) for Windows. A p-value that is below 0.05 was regarded to be statistically significant.

Results

The clinical results of routine care treatments in combination with molecular hydrogen  water HW via Tube for Feeding

The hospitalized days and the DESIGN-rating of PressureUlcers

For the PressureUlcer patients, the hospitalized days in EffectiveGroup were significantly shorter than in LesseffectiveGroup (113.3 days vs. 155.4 days, p < 0.05), and the PressureUlcers reduction rate was approximately 28.1% (Figure 3-a). Likewise, DESIGN-rating in EG was also decreased for comparing the onset with the endpoint (11.5 rates vs. 14.3 rates, p < 0.05) between pre-post evaluations including both in onset (evaluation in the initial time, at the day for the admission to hospital) and in endpoint (evaluation in the last time, at the day for the discharge from hospital or death day). In LG, no statistically significance was seen, in DESIGN-rating indicative of degree of severity for PU, between both of them (Figure 3-b).

Figure 3

Comparison of PU clinical effects for the hospitalized days and the DESIGN-rating in the effective group and in the less effective group. Figure 3a shows the period for the PU hospitalized days in EG was significantly shorter than in LG. Figure 3b indicates that the DESIGN-rating in EG was decreased for comparing the onset with the endpoint. Pre-post evaluations were performed, where the onset and the endpoint were included. All values are statistically compared. Statistical analysis was performed using Student’s t-test, and the significant differences are defined as p < 0.05. The data are presented as the means with the standard deviation (± SD, indicated by the vertical bar). * p < 0.05.

Results of wound size in two groups

Wound measurement is an important means to know the degrees of PU, and its measuring method was demonstrated in Figure 4-a (Figure 4-a). Either in EG or in LG, the reducing changes (EG: 91.4%; LG: 48.6%) of the wound sizes represent a statistically significant difference (p < 0.05, p < 0.001). Similarly, a significant difference is also seen between both EG and LG groups (p < 0.05) (Figure 4-b).

Figure 4

Measurement methods for wound size and results of wound size in the wound-size reductive change between both the groups. Figure 4a demonstrates the wound measurement method. As a protocol, initially, measure the greatest length along the axial direction (head to toe), and then the greatest width along the transverse direction (side to side) using a centimeter ruler. Finally multiply distances of length and width to obtain an estimate of surface area in square centimeters (cm2). Figure 4b indicates a statistically significant difference to the reducing change of wound size in two groups. Some patients had multiple locations for PU. Values are statistically compared. Student’s t-test, *p < 0.05, ***p < 0.001.

Expression of various PU-assessment indices forcing on both stage II and stage III

For observing the clinical effects in many respects, including the hospitalized days, DESIGN-rating and wound size, EG and LG were subdivided to four subgroups according to classifications of PU-stages (see Methods (3)-3). As a result, in stage II, a period for hospitalized days in EG showed significantly shorter than in LG (87.5 days vs. 387.0 days, p < 0.001). Contrary to this, in two group, there was no significance statistically for hospitalized days in stage III (Figure 5-a) owing to diseases other than PU. Moreover, in EG, the DESIGN-rating obtained from subgroups of stage II and stage III depicted a statistically significant difference (p < 0.05) (Figure 5-b). Meanwhile, the diminishment for wound size within subgroups of stage II and stage III presents any statistical differences (Figure 5-c). In a conclusion, stage II and stage III ulcers of EG healed faster and more effectively than those of LG.

Figure 5

Expression of various PU-assessment indices forcing on both stage II and stage III. Figures 5a to –c imply very significant differences among four subgroups based on stage II or stage III. P-values calculated from Student’s t-test, * p < 0.05, ** p < 0.01, *** p < 0.001.

Results of a typical case on time-dependent wound-healing progress: for an 85-year-old female patient with PressureUlcer

Figure 6 showed the time-dependent wound-healing progress for an 85-year-old female patient with PressureUlcer. She was admitted to the hospital for suffering from PressureUlcer. Wound findings at onset included: location: sacrum; wound size (cm2): 20.8; stage: II; DESIGN-rating: 16. Four months after routine care treatment plus a combination with molecular hydrogen water HW intake via TubeFeeding, the crater nearly disappeared. Wound findings at endpoint (vs. of onset) included: wound size (cm2): approximately 0 (disappearance); stage: I (improve); DESIGN-rating: 6 (decrease) (Figures 6-a to -d).

Figure 6

Results of a typical case on time-dependent wound-healing progress. An annual time-dependent wound healing progress for an 85-year-old female PressureUlcer patient is reported. She was admitted to the hospital seeking treatment to PressureUlcer. Figure 6a demonstrates photographs for the time-dependent wound-healing progress obtained from the same patient. Figures 6b to –d represent the decreased tendencies of wound size, DESIGN-rating, and stage, respectively.

Results of another typical case on time-dependent wound-healing progress: for an 80-year-old male patient with PressureUlcer

Figure 7 showed the time-dependent wound-healing progress for an 80-year-old male patient with PressureUlcer. His hospitalized period lasted 10 months and it could be divided into the two sub-periods. During the latter 5-month period, he received molecular  HydrogenWater treatment in the addition to the routine care. The outcome shows an improved result (Figures 7-a, -b).

Figure 7

Results of another typical case on time-dependent wound-healing progress. Similarly to Figure 6, Figure 7 also demonstrates a time-dependent wound healing progress, for an 80-year-old male PressureUlcer patient. Figure 7a shows the features photographed at the former period for routine care treatment alone. On the other hand, Figure 7bpresents ones photographed at the latter period for routine care treatment plus molecular Hydrogen Water intake. The latter period in using HydrogenWater intake shows a marked improved outcome.

In vitro experiments

Promotive effects on reconstruction of type-I collagen, as shown by immunostain, on normal human dermal fibroblasts OUMS-36 that were irradiated with UVA ray and then were administered with reverse osmosis water RW- or molecular hydrogen water HW-prepared culture medium, respectively

To study the reconstructive effect of molecular hydrogen water HW on type-I collagen, we used immunostain on OUMS-36 cells that were irradiated with UVA ray and then were administered with reverse osmosis water RW or molecular hydrogen water HW in vitro, respectively. Representative expressions and pixel values were plotted with a software ImageJ (http://rsb.info.nih.gov/ij/). Nuclear condensation (so-called pycnosis) and fragmentation (so-called karyorrhexis) were occurred for UVA-irradiated OUMS-36 cells in reverse osmosis water RW, but scarcely occurred in molecular hydrogen water HW (Figure 8). HW molecular hydrogen water group shows higher proliferation of cells with rounded morphology in fibroblasts and huge morphology, and more abundant in type-I collagen than ones of reverse osmosis water RW group.

Figure 8

Reconstructive effects of molecular hydrogen water HW in UVA-irradiated OUMS-36 cells. Figures 8a, –b: Distributional expressions of type-I collagen with immunostain (green) in OUMS-36 cells that were irradiated with UVA ray and were administered with reverse osmosis waterRW or molecular hydrogen water HW, respectively. Figure 8b: Each yellow dashed lines indicate type-I collagen-rich regions. Figure 8c: Relative fluorescence intensity plotted with the ImageJ to present the pixel number. Type-I collagen stain on OUMS-36 cells that were irradiated with UVA ray and were administered with reverse osmosis water RW or molecular hydrogen water HW, respectively, is showed. Figure 8d: The pseudocolor feature was plotted using ImageJ as an intensity which is corresponding to type-I collagen exhibition degree per one hundred cells (μm2/100 cells). Magnification: ×200; scale bars = 50 μm. Student’s t-test, *** p < 0.001.

Proliferative effects of nucleus-DAPI stain on UVA-irradiated normal human dermal fibroblasts OUMS-36 that were administered with reverse osmosis water RW- or molecular hydrogen water HW-prepared culture medium, respectively

With fluorescence microscopy, DAPI dye can be excited by UVA ray. To examine the reconstructive effect of molecular hydrogen water HW on type-I collagen by immunostain, we also counterstaind nuclei with a DAPI dye in UVA-irradiated OUMS-36 cells for observing the changes when OUMS-36 cells were administered with Reverse osmosis Water or molecular hydrogen water HW in vitro, respectively. Representative expression and relative fluorescence intensity were plotted with the ImageJ. The facilitative effect on nuclear condensation and fragmentation was observed for UVA-irradiated OUMS-36 cells in Reverse osmosis Water , but scarcely occurred in molecular hydrogen water HW as demonstrated by DAPI staining as like the result obtained from immunostain (Figure 9). Through Figure 9-c, the degrees of DAPI stain on HaCaT cells that were irradiated with UVA ray and were administered with  Reverse osmosis Water or molecular hydrogen water HW, respectively, were clarified.

Figure 9

Features of nucleus-DAPI stain on UVA-irradiated HaCaT cells. Figures 9a, –b: Distributional expressions of nucleus-DAPI stain (blue) in HaCaT cells that were irradiated with UVA ray and were administered with  Reverse osmosis Water or molecular Hydrogen Water, respectively. Figures 9c, –d: The relative fluorescence intensity and the pseudocolor feature for type-I collagen were plotted using ImageJ. Magnification: ×200; scale bars = 200 μm. Student’s t-test, *** p < 0.001.

ROS amounts in normal human epidermis-derived keratinocytes HaCaT as quantified by NBT assay

In HaCaT cells, the intracellular ROS amounts were increased in the Reverse osmosis Water -prepared culture medium with UVA-irradiation in different UVA ray doses, but were restored in the molecular hydrogen water HW-prepared culture medium as shown by NBT-stain for superoxide anion radicals. Cell morphology was observed to be more health and less harmful in molecular HydrogenWater than  Reverse osmosis Water (Figure 10). Figure 10-e showed that NBT-stain was denser in dark-blue color in Reverse osmosis Water -administered cells than in molecular HydrogenWater-administered cells, indicating the intracellular ROS repression in molecular Hydrogen Water-administered cells.

Figure 10

Intracellular ROS amounts in HaCaT cells as quantified by NBT assay. Figures 10a, –b: The retained cell morphology and the diminished ROS were shown in molecular hydrogen water HW-prepared culture medium for comparing with Reverse osmosis Water .Yellow dashed lines indicate abundant dark-blue dyes that were the reaction products where ROS such as superoxide anion radical was found to react with NBT-stain. Figures 10c, –d: The expressions of surface plotter by ImageJ. Figure 10e: The mean gray values obtained from ImageJ used to express the increase or decrease in superoxide anion radicals within normal human epidermis-derived keratinocytes HaCaT according to NBT-stain. In detail, the vertical axis shows the brightness presented as a mean gray value, which is considered as an index to show the cellular stained intensity and use to indicate ROS amounts. The cell morphologies of Reverse osmosis Water  RW and molecular hydrogen water HW were divided into the eight regions and then compared with their mean gray values by Student’s t-test (** p < 0.01). Magnification: ×200; scale bars = 100 μm.

Elevation of cell viability by pre-irradiational administration with molecular hydrogen-dissolved water to UVA-irradiated HaCaT cells as assessed by mitochondrial dehydrogenase-based WST-1 assay

In HaCaT cells, the cell viability was obviously increased in the molecular hydrogen water HW-prepared culture medium with UVA-irradiation, comparing with reverse osmosis water RW-prepared culture medium by WST-1 assay (Figure 11-d). Cell morphology was also observed to be less vulnerable in terms of diverse symptoms such as cell shrinkage, nuclear condensation and cell fragmentation for molecular hydrogen water HW than reverse osmosis water RW (Figures 11-b, -c). molecular hydrogen water HW group showed higher proliferation of cells with rounded morphology and huge morphology, in HaCaT cells than ones of Reverse osmosis Water group. All of these evidences predicted that molecular  hydrogen-dissolved water may exert cytoprotective effects against UVA ray on HaCaT cells.

Figure 11

Results of cell viability of HaCaT cells as assessed by WST-1 assay. Figure 11a: HaCaT cells are shown in the non-administered or non-UVA-irradiated status. Figures 11b, –c: The morphologic features of HaCaT cells are shown in reverse osmosis water RW or molecular hydrogen water HW, respectively, after irradiation with UVA ray. Figure 11d: The cell viability is shown for HaCaT cells after UVA-irradiation by WST-1 assay. Magnification: ×400; Scale bar = 100 μm. Student’s t-test, ** p < 0.01.

Discussion

The purpose of the present study was to examine the clinical effectiveness of wound healing for Pressure Ulcers using molecular hydrogen water HW intake via TubeFeeding. We have hypothesized that the routine care treatment in combination with molecular hydrogen water HW intake for PressureUlcer patients may improve wound healing, and maintain more healthy condition for them. Furthermore, normal human dermal fibroblasts OUMS-36 and normal human epidermis-derived keratinocytes HaCaT were examined to explore the mechanisms underlying to whether molecular hydrogen plays a role in wound-healing at aspect for cutis tissue, through in vitro experiments.

Our clinical results seem to suggest that molecular hydrogen water  HW oral intake via TubeFeeding is an effective means for wound healing of PressureUlcer patients, who suffered from eating disorder. Despite the limitations caused by practicing our clinical intervention for PressureUlcers, we were able to obtain the improving results in hospitalized days, wound size and other clinical indices by comparing EG with LG. Therefore, we estimated that molecular hydrogen water  HW absorbed by the gastrointestinal tract plays an important role in oxidative-stress reduction, extracellular matrix reconstitution, and anti-inflammatory effects. Several experiments have supported our considerations as follows.

At first, it was demonstrated that molecular hydrogen gas (H2) has a beneficial influence on the gastrointestinal tract [29]. Kajiya et al. established a mouse model of human inflammatory bowel disease (IBD) by supplying to mice drinking water containing a) 5% dextran sodium sulfate (DSS), b) 5% DSS and molecular hydrogen H2, or c) molecular hydrogen H2 only ad libitum up to 7 days. They found that on day-7, DSS-induced pathogenic outcomes including elevated levels of IL-12, TNF-α and IL-1- β in colon lesion, etc. were significantly suppressed by addition of molecular hydrogen H2 to DSS solution. Thereby, it was concluded that molecular hydrogen H2 can make an anti-inflammatory influence on gastrointestinal tract in vivo[30].

Secondly, Nakashima-Kamimura et al. examined whether drinking water containing the saturated dissolved molecular hydrogen (HW: 0.8 mM molecular hydrogen H2 in water) is applicable by examining the effects of oxidative stress, mortality, and body-weight loss as well as serum creatinine, and blood urea nitrogen (BUN) levels. In in vivo experiments, their results showed that molecular hydrogen was detected in the blood when molecular hydrogen water  HW was placed via gavage at a dose of 15 mL/kg in the stomach of a rat, and molecular hydrogen water  HW is applicable to alleviate nephrotoxic side-effects induced by an anti-cancer drug, such as cisplatin [31].

Thirdly, as molecular hydrogen gas can act as a scavenger of ROS, Cardinal et al. tested the effect of treatment with molecular hydrogen water HW in a rat model of kidney transplantation. In consequence, treatment with molecular hydrogen water  HW improved allograft function, slowed the progression of chronic allograft nephropathy (CAN), reduced oxidant injury and inflammatory mediator production, and improved overall survival. Their conclusion was that molecular hydrogen water HW is an effective antioxidant and anti-inflammatory agent in vivo[32].

It was previously shown that some free radicals inhibit the wound healing process [33]. molecular hydrogen H2 is a colorless, odorless, tasteless gas, and it possesses some peroxidant reducibility. molecular hydrogen H2 is possible to easily pass through the small intestine villi into the human body inside and blood stream [15], because its molecular weight is the smallest of all molecule species, and it has gaseous and electrically neutral properties, as well as it shows a strong diffusion capacity. Moreover, molecular hydrogen H2 maybe has its special channels for transporting into intracellular space, such as the aquaporins (AQPs) for water, especially molecular hydrogen-holding water, and the Rhesus (Rh) proteins [34].

Thus, coupled with the body itself and the enterogenous-H2 molecular hydrogen presence, due to specified intestinal bacteria, molecular hydrogen water HW intake via TubeFeeding can play an important role on improving the formation of wound granulates on disintegrated necrosis loci, and the ability to have an anti-inflammatory effect through an ROS-reduction mechanism.

Additionally, it should be pointed out that apoptotic cells can stimulate proliferation, wound healing, and tissue regeneration [35]. We are focusing on “the apoptosis-induced compensatory proliferation” which occurs in PressureUlcers [36]. Generally, necrosis has an effect of the secondary lethal damage to the wound-surrounding cells of PressureUlcers through cell swelling and burst. By contrast, cell debris that is caused by cell shrinkage and fragmentation in apoptosis in which karyorrhexis (i.e. nuclear fragmentation) and pycnosis (i.e. nuclear condensation) are revealed as an early event, is subjected to endocytosis by both the migratory professional phagocytes (e.g.macrophages and Langerhans cells in the epidermis) and the surrounding non-professional phagocytes. So, it is thought that “the compensatory proliferation” is induced for the reason that cell debris is peaceably handled to restrain the surrounding cells within a minimal deteriorating impact. On this occasion, ROS may be able to be suppressed by the molecular hydrogen water to evoke an apoptosis more gently, and subsequently, apoptosis that is caused in wound-surrounding cells of PressureUlcers stimulates the compensatory proliferation to lead to an early healing. Indeed, Cai JM et al. reported that 2% molecular hydrogen gas inhalation administered to a neonatal hypoxia-ischemia rat model could reduce apoptosis [37].

When molecular Hydrogen Water-intake via TubeFeeding was combined with routine care treatments, the wound healing process can be markedly accelerated. Hence, the effective mechanism of molecular Hydrogen Water possesses at least two possible pathways, firstly is an antioxidant effect and secondly is an anti-inflammatory effect. Moreover, we thought that molecular hydrogen water HW may have additional effects, i.e. reconstruction of collagen and cytoprotection for other dermal as well epidermal cells. Therefore, we carried out an in vitro experiment on normal human dermal fibroblasts OUMS-36 and normal human epidermis-derived keratinocytes HaCaT to examine their interaction. Therefore, either dermal or epidermal cells were respectively cultured in molecular hydrogen water HW or reverse osmosis water  RW-prepared medium. Immunostain was used for observing type-I collagen reconstruction in OUMS-36 cells and showed the promotive effect. And cell viability of HaCaT cells was examined in terms of cell morphological observation and WST-1 assay, and their generated ROS, especially superoxide onion radials, was measured by NBT assay, respectively, all of which showed the cell-death-repressive and ROS-scavenging effects.

We have attempted to draw the illustrations for assuming a cure mechanism from stage III to wound healing during Pressure Ulcers (Figure 12).

Figure 12

Mechanism for wound healing of pressure ulcer by molecular hydrogen-dissolved water. We are predicting that ROS can lead to a pressure ulcer, and the causative process is shown by the left illustration. First of all, such diverse factors as bedridden syndrome, mechanical pressure and local ischemia produce ROS which causes necrosis and apoptosis in combination with other pathologic factors, potently resulting in wounds and tissue defects of pressure ulcer. On the other hand, the right illustration shows the healing mechanism. Oral intake of nano-bubble molecular hydrogen water via drinking or tube-feeding passes by the mouth or esophagus, and it is absorbed by the epithelial cells of the small intestines. It is possible that molecular hydrogen gas transpires in past from molecular hydrogen water  HW and inhaled by the lung. Then, the absorbed nano-bubble molecular hydrogen migrates to cutis tissue through blood circulation and scavenges ROS abundantly generated in Pressure Ulcers. Finally, this process results in collagen reconstruction of fibroblasts in the dermis and the proliferation of keratinocytes in the epidermis, and causes angiogenesis and remodeling for repairs in the defected tissue.

Consequently, our in vitro data demonstrated that intracellular ROS was diminished by molecular hydrogen water  HW, but not by reverse osmosis water RW, in UVA-irradiated OUMS-36 fibroblasts. Nuclear condensation and fragmentation were occurred for UVA-irradiated OUMS-36 cells in reverse osmosis waterRW, but scarcely occurred in molecular hydrogen water  HW as demonstrated by DAPI staining. Besides, in HaCaT cells, the mitochondrial dehydrogenase, especially succinate dehydrogenase activity was diminished in reverse osmosis water  RW-prepared culture medium with UVA-irradiation, but was retained in molecular hydrogen water HW-prepared culture medium as shown by NBT and WST-1 assay. Thus, UVA-induced ROS, especially singlet oxygen and superoxide onion radicals were suggested to be scavenged by molecular hydrogen and result in cytoprotection against ROS-induced mitochondrial dysfunction.

Similar results have been reported from previous research works on reconstruction of collagen in other dermal or epidermal cells by molecular hydrogen water HW [3839].

As a mechanism for using molecular hydrogen water  HW to treat PressureUlcers at aspect of dermal and epidermal cells, we consider that there are three pathways as follows:

(1) the promotion of the formation of dermis structure as well as reconstruction to type-I collagen,

(2) the prevention of the formation of wound granules on disintegrated necrosis loci, and

(3) the repair and restoration of scar tissues.

Healing effects for PressureUlcers patients through molecular hydrogen water  HW oral intake via TubeFeeding as shown by our present study have been scarcely found in the past. Our experience in this study added further evidences to a possible role in medical therapies for Pressure Ulcers. Additionally, as well known, there are different methods to manufacture the hydrogen water by diverse research groups, so there are also different water-parameters about molecular hydrogen water HW. In order to show our data obtained from measurements with the different dilution ratios, we had specially set up Figures 1 and 2, as well as Table 2 to present these achievements. How to manufacture molecular hydrogen water  HW and reverse osmosis water RW is an important and essential matter in the field of hydrogen water medicine.

But, this study has some limitations that should be considered when interpreting the results. Firstly the study design could not be carried out as the randomized control trail (RCT), because generally PU-cure clinical intervention test cannot be executed as RCT owing to other diverse factors such as various diseases concurrence and complication. Clinical situation did not allow us to get clinical data prior to one as we designed. Secondly we could not design the trial into comparing the results both molecular hydrogen water HW oral intake and external washing of injurious sites with molecular hydrogen water  HW, respectively. These deserve the next-step study.

Conclusions

molecular hydrogen water  HW intake via Tube Feeding was demonstrated, for severely hospitalized elderly patients with Pressure Ulcers, to execute wound size reduction and early recovery, both of which potently ensue from either type-I collagen construction in dermal fibroblasts or the promoted mitochondrial reducing ability and ROS repression in epidermal keratinocytes as shown by immunostain, NBT and WST-1 assays, respectively.

https://medicalgasresearch.biomedcentral.com/articles/10.1186/2045-9912-3-20

 

 

Consent

Written informed consents that were presented from the patients for the publication of this report and any accompanying images were obtained and confirmed as the ethical clearance by the Ethics Committee of Kobayashi Hospital, Fukuyama City, Hiroshima Prefecture, Japan.

Declarations

Acknowledgments

The authors are grateful to Kobayashi Hospital and the representative director Dr. Yoshizi Kobayashi, for their devoted support to part of clinical trial. This study was supported, in part, by grant-in-aid from JCAAMS (Japanese Center for Anti-aging MedSciences, Hiroshima).

Authors’ Affiliations

(1)

Department of Radiological Technology, Faculty of Health Sciences, Butsuryo College of Osaka

(2)

Life Science Research Center, Mie University

(3)

Hiroshima Kasei Co. Ltd

References

  1. Edlich RF, Winters KL, Woodard CR, Buschbacher RM, Long WB, Gebhart JH, Ma EK: Pressure ulcer prevention. J Long Term Eff Med Implants. 2004, 14 (4): 285-304. 10.1615/JLongTermEffMedImplants.v14.i4.20.PubMedView ArticleGoogle Scholar
  2. Maklebust J: Interrupting the pressure ulcer cycle. Nurs Clin North Am. 1999, 34 (4): 861-871.PubMedGoogle Scholar
  3. European Pressure Ulcer Advisory Panel and National Pressure Ulcer Advisory Panel: Prevention and treatment of pressure ulcers: quick reference guide. 2009, Washington DC: National Pressure Ulcer Advisory PanelGoogle Scholar
  4. Upton Z, Wallace HJ, Shooter GK, van Lonkhuyzen DR, Yeoh-Ellerton S, Rayment EA, Fleming JM, Broszczak D, Queen D, Sibbald RG, Leavesley DI, Stacey MC: Human pilot studies reveal the potential of a vitronectin: growth factor complex as a treatment for chronic wounds. Int Wound J. 2011, 8 (5): 522-532. 10.1111/j.1742-481X.2011.00859.x.PubMedView ArticleGoogle Scholar
  5. Lim CP, Phan TT, Lim IJ, Cao X: Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J Invest Dermatol. 2009, 129 (4): 851-861. 10.1038/jid.2008.337.PubMedView ArticleGoogle Scholar
  6. Kato S, Saitoh Y, Iwai K, Miwa N: Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J Photochem Photobiol B. 2012, 106: 24-33.PubMedView ArticleGoogle Scholar
  7. Watanabe S, Saitoh Y, Namba M, Miwa N: Administration with telomeric DNA telomere-like oligonucleotides induces enhancement of telomerase activity and resistance against oxidative stress in telomere reverse transcriptase gene-transfected human fibroblasts. Biomed Pharmacother. 2010, 64 (8): 565-571. 10.1016/j.biopha.2010.02.005.PubMedView ArticleGoogle Scholar
  8. Yokoo S, Furumoto K, Hiyama E, Miwa N: Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem. 2004, 93 (3): 588-597. 10.1002/jcb.20208.PubMedView ArticleGoogle Scholar
  9. Qiang S, Kawamura T, Masutani K, Peng X, Qing S, Stolz DB, Pribis JP, Billiar TR, Sun X, Bermudez CA, Toyoda Y, Nakao A: Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats. Cardiovasc Res. 2012, 94 (1): 144-153. 10.1093/cvr/cvs024.View ArticleGoogle Scholar
  10. Noda K, Tanaka Y, Shigemura N, Kawamura T, Wang Y, Masutani K, Sun X, Toyoda Y, Bermudez CA, Nakao A: Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl Int. 2012, 25 (12): 1213-1222. 10.1111/j.1432-2277.2012.01542.x.PubMedView ArticleGoogle Scholar
  11. Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T: Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008, 28 (3): 137-143. 10.1016/j.nutres.2008.01.008.PubMedView ArticleGoogle Scholar
  12. Ishibashi T, Sato B, Rikitake M, Seo T, Kurokawa R, Hara Y, Naritomi Y, Hara H, Nagao T: Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med Gas Res. 2012, 2 (1): 27-10.1186/2045-9912-2-27.PubMed CentralPubMedView ArticleGoogle Scholar
  13. Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S: Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun. 2008, 377 (4): 1195-1198. 10.1016/j.bbrc.2008.10.156.PubMedView ArticleGoogle Scholar
  14. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M: Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One. 2009, 4 (9): e7247-10.1371/journal.pone.0007247.PubMed CentralPubMedView ArticleGoogle Scholar
  15. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13 (6): 688-694. 10.1038/nm1577.PubMedView ArticleGoogle Scholar
  16. Fukuda KI, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S: Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. 2007, 361 (3): 670-674. 10.1016/j.bbrc.2007.07.088.PubMedView ArticleGoogle Scholar
  17. Wood KC, Gladwin MT: The hydrogen highway to reperfusion therapy. Nat Med. 2007, 13 (6): 673-674. 10.1038/nm0607-673.PubMedView ArticleGoogle Scholar
  18. The actual state investigative committee of 9th Japanese society of pressure ulcers: Investigation of the current clinical practice on pressure ulcers for its prevalence rate. Med Trib. 2007, 10: 11-in JapaneseGoogle Scholar
  19. Saitoh Y, Yoshimura Y, Nakano K, Miwa N: Platinum nanocolloid-supplemented hydrogen-dissolved water inhibits growth of human tongue carcinoma cells preferentially over normal cells. Exp Oncol. 2009, 31 (3): 156-62.PubMedGoogle Scholar
  20. Saitoh Y, Okayasu H, Xiao L, Harata Y, Miwa N: Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. Oncol Res. 2008, 17 (6): 247-255. 10.3727/096504008786991620.PubMedView ArticleGoogle Scholar
  21. Saitoh Y, Harata Y, Mizuhashi F, Nakajima M, Miwa N: Biological safety of neutral-pH hydrogen-enriched electrolyzed water upon mutagenicity, genotoxicity and subchronic oral toxicity. Toxicol Ind Health. 2010, 26 (4): 203-216. 10.1177/0748233710362989.PubMedView ArticleGoogle Scholar
  22. Asada R, Kageyama K, Tanaka H, Matsui H, Kimura M, Saitoh Y, Miwa N: Antitumor effects of nano-bubble hydrogen-dissolved water are enhanced by coexistent platinum colloid and the combined hyperthermia with apoptosis-like cell death. Oncol Rep. 2010, 24 (6): 1463-1470.PubMedGoogle Scholar
  23. Kato S, Hokama R, Okayasu H, Saitoh Y, Iwai K, Miwa N: Colloidal platinum in hydrogen-rich water exhibits radical-scavenging activity and improves blood fluidity. J Nanosci Nanotechnol. 2012, 12 (5): 4019-4027. 10.1166/jnn.2012.6163.PubMedView ArticleGoogle Scholar
  24. Sanada H: “Pressure Ulcer: Assessment/care guide”. 2009, Nakayama Shoten Co. Ltd, 127-In Japanese, ISBN 978-4-521-73171-12Google Scholar
  25. Wicks G: A guide to the treatment of pressure ulcers from grade 1-grade 4. Wound Essent. 2007, 2: 106-112.Google Scholar
  26. Zeller JL: Pressure ulcers. JAMA. 2006, 296 (8): 23-30.View ArticleGoogle Scholar
  27. Matsui Y, Furue M, Sanada H, Tachibana T, Nakayama T, Sugama J, Furuta K, Tachi M, Tokunaga K, Miyachi Y: Development of the DESIGN-R with an observational study: an absolute evaluation tool for monitoring pressure ulcer wound healing. Wound Repair Regen. 2011, 19 (3): 309-315. 10.1111/j.1524-475X.2011.00674.x.PubMedView ArticleGoogle Scholar
  28. Sanada H, Iizaka S, Matsui Y, Furue M, Tachibana T, Nakayama T, Sugama J, Furuta K, Tachi M, Tokunaga K, Miyachi Y: Clinical wound assessment using DESIGN-R total score can predict pressure ulcer healing: pooled analysis from two multicenter cohort studies. Wound Repair Regen. 2011, 19 (5): 559-567. 10.1111/j.1524-475X.2011.00719.x.PubMedView ArticleGoogle Scholar
  29. Chuai YH, Sun XJ, Cai J: Biology of hydrogen and its medical applications. Act Biophys Sin. 2012, 28 (9): 705-718. (in Chinese)View ArticleGoogle Scholar
  30. Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T: Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun. 2009, 386 (1): 11-15. 10.1016/j.bbrc.2009.05.117.PubMedView ArticleGoogle Scholar
  31. Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S: Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. 2009, 64 (4): 753-761. 10.1007/s00280-008-0924-2.PubMedView ArticleGoogle Scholar
  32. Cardinal JS, Zhan JH, Wang YN, Sugimoto R, Tsung A, McCurry KR, Billiar TR, Nakao A: Oral hydrogen water prevents chronic allograft nephropathy in rats: Hydrogen water prevented CAN. Kidney Int. 2010, 77: 101-109. 10.1038/ki.2009.421.PubMedView ArticleGoogle Scholar
  33. Foschi D, Trabucchi E, Musazzi M, Castoldi L, Di Mattia D, Radaelli E, Marazzi M, Franzini P, Berlusconi A: The effects of oxygen free radicals on wound healing. Int J Tissue React. 1988, 10 (6): 373-379.PubMedGoogle Scholar
  34. Boron WF: Sharpey-Schafer lecture: gas channels. Exp Physiol. 2010, 95 (12): 1107-1130. 10.1113/expphysiol.2010.055244.PubMed CentralPubMedView ArticleGoogle Scholar
  35. Fuchs Y, Steller H: Programmed cell death in animal development and disease. Cell. 2011, 147 (4): 742-758. 10.1016/j.cell.2011.10.033.PubMed CentralPubMedView ArticleGoogle Scholar
  36. Bergmann A, Steller H: Apoptosis, stem cells, and tissue regeneration. Sci Signal. 2010, 3 (145): re8-10.1126/scisignal.3145re8.PubMed CentralPubMedView ArticleGoogle Scholar
  37. Cai JM, Kang ZM, Liu WW, Luo X, Qiang S, Zhang JH, Ohta SG, Sun XJ, Xu WG, Tao HY, Li RP: Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett. 2008, 441 (2): 167-172. 10.1016/j.neulet.2008.05.077.PubMedView ArticleGoogle Scholar
  38. Saitoh Y, Miyanishi A, Mizuno H, Kato S, Aoshima H, Kokubo K, Miwa N: Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. J Photochem Photobiol B. 2011, 102 (1): 69-76. 10.1016/j.jphotobiol.2010.09.006.PubMedView ArticleGoogle Scholar
  39. Hoerter JD, Ward CS, Bale KD, Gizachew AN, Graham R, Reynolds J, Ward ME, Choi C, Kagabo JL, Sauer M, Kuipers T, Hotchkiss T, Banner N, Chellson RA, Ohaeri T, Gant L, Vanderhill L: Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts. Int J Biol Sci. 2008, 4 (2): 63-70.PubMed CentralPubMedView ArticleGoogle Scholar
Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro
  • Qiang Li,
  • Shinya Kato,
  • Daigo Matsuoka,
  • Hiroshi Tanaka and
  • Nobuhiko MiwaEmail author
Medical Gas Research20133:20

https://doi.org/10.1186/2045-9912-3-20

Received: 9 June 2013

Accepted: 5 September 2013

Published: 10 September 2013

Copyright

© Li et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Positive effects of hydrogen-water bathing in patients of PSORIAZIS and PARAPSORIAZIS en plaques

Positive effects of molecular hydrogen-water bathing in patients of psoriasis and parapsoriasis en plaques

Abstract

Psoriasis and parapsoriasis en plaques are chronic inflammatory skin diseases, both representing therapeutic challenge in daily practice and adversely affecting the quality of life. Reactive oxygen species (ROS) has been evidenced to be involved in the pathogenesis of the chronic inflammatory diseases. We now report that molecular hydrogen water, an effective ROS scavenger, has significant and rapid improvement in disease severity and quality of life for patients with psoriasis and parapsoriasis en plaques. At week 8, our parallel-controlled trial revealed 24.4% of patients (10/41) receiving molecular hydrogen-water bathing achieved at least 75% improvement in Psoriasis Area Severity Index (PASI) score compared with 2.9% of patients (1/34) of the control group (Pc = 0.022, OR = 0.094, 95%CI = [0.011, 0.777]). Of patients, 56.1% (23/41) who received bathing achieved at least 50% improvement in PASI score compared with only 17.7%(6/34) of the control group (P = 0.001, OR = 0.168, 95%CI = [0.057, 0.492]). The significant improvement of pruritus was also observed (P = 3.94 × 10−4). Besides, complete response was observed in 33.3% of patients (2/6) of parapsoriasis en plaques and partial response in 66.7% (4/6) at week 8. Our findings suggested that molecular hydrogen-water bathing therapy could fulfill the unmet need for these chronic inflammatory skin diseases.

Introduction

Psoriasis and parapsoriasis en plaques are both chronic inflammatory skin diseases characterized by persistently scaling and inflammatory eruptions,. They represent therapeutic challenge in daily practice and adversely affect the quality of life of patients. Psoriasis is so common that has been recognized since ancient times, affecting about 1% to 3% of the general population. It is associated with a high degree of morbidity. Indeed, disability and impact on quality of life secondary to psoriasis parallels that of heart disease and arthritis,. Parapsoriasis en plaques is a relatively rare group of disorders which has been classified into small plaque parapsoriasis (SPP) and large plaque parapsoriasis (LPP) according to the size of the lesions. Although the relation of SPP with mycosis fungoides (MF) is still a matter of discussion, there are about 10–30% of cases of LPP result in MF finally. The interactive network of the immune system and skin cells is thought to play a vital role in the pathogenesis of both diseases. To be more accurate, psoriasis is considered a Th1⁄Th17-driven disease, while parapsoriasis en plaques is a model of cutaneous T cell lympho-proliferative disorders and has been proved to be a monoclonal disorder in many cases. For a long period, conventional treatment to both diseases has not fully met the needs of patients while having well-known side-effects. The improved understanding of the autoimmune inflammatory pathways and associated changing concepts in pathogenesis have led to the development of biological drugs, which especially revolutionized the treatment of psoriasis,. However, slow onset of action, high cost, efficacy lost over time and the long-term safety profile of these biologics still remain unsolved.

Recently, it has been evidenced that oxidative stress such as increased reactive oxygen species (ROS) production may be involved in the pathogenesis of chronic inflammatory diseases,. The possibility of using this information to develop novel strategies for treatment is of considerable interest. Hydrogen molecule (H2) has been used in medical applications as a safe and effective antioxidant and immunomodulator with minimal side effects. Unlike other antioxidants, which are unable to target organelles, H2 can penetrate biomembranes and diffuse into the cytosol, mitochondria and nucleus. Moreover, it has also been reported to selectively scavenge ROS and show positive influence in Th1, Th2, and pro-inflammatory cytokine imbalance. Up to date, molecular hydrogen water (solubilized H2) as a treatment strategy for psoriasis-associated skin lesions has been tried by few case reports, and neither has molecular hydrogen water for patients with parapsoriasis en plaques. Apart from drinking molecular hydrogen water, inhalation of molecular hydrogen gas and injecting H2-dissolved saline, molecular hydrogen-water bathing is a new approach highlights by its skin-directed, safe and painless administration. Thus, our study conducted a parallel-controlled trial in patients with psoriasis and a self-controlled trial in patients with parapsoriasis en plaques to evaluate the efficacy of molecular hydrogen-water bathing to these chronic inflammatory skin diseases.

Results

Improvement of psoriasis

In all, 41 psoriasis patients were assigned to treatment with molecular hydrogen-water bathing therapy and 34 patients were assigned to the control group. The treatment groups were well balanced with respect to demographics and baseline characteristics (Table 1). Only one patient of the control group withdrew during the course of the study at week 2 due to a lack of improvement and she was counted as a non-responder in the control group. Response was evident after 8-week bathing therapy. The mean Psoriasis Area Severity Index (PASI) score and median visual analog scale (VAS) score of the molecular hydrogen-water bathing group at week 8 was 5.8 and 0 respectively, significantly lower than the baseline scores (P = 7.08 × 10−6P = 2.42 × 10−5).

Table 1

Characteristics of the psoriasis patients.

The molecular Hydrogen-water bathing group The control group
Baseline Week 8 Baseline Week 8
No 41 41 34 33
Sex(male/female) 24/17 24/17 18/16 18/15
Age 40 ± 15 (18–78) 40 ± 15 (18–78) 39 ± 12 (18–72) 39 ± 13 (18–72)
BMI 23.8 ± 3.8 (17.5–35.5) 23.7 ± 3.9 (17.2–35.6) 23.1 ± 4.2 (15.5–31.4) 23.0 ± 4.6 (15.3–31.4)
Waistline (cm) 82.7 ± 10.3 (63.3–103.3) 82.8 ± 9.8 (63.3–103.3) 76.8 ± 8.7 (58.2–95.4) 76.8 ± 8.9 (58.2–95.4)
PASI score 9.8 ± 5.9 (1.4–25.2) 5.8 ± 5.5 (0.2–25.2) 8.5 ± 4.1 (2.8–23.8) 7.9 ± 6.8 (0.8–34.5)
VAS score (median, range) 2 (0–8) 0 (0–4) 0 (0–7) 0 (0–9)

PASI: Psoriasis Area Severity Index; VAS: the visual analog scale; BMI: Body Mass Index.

After 8 weeks of therapy, patients treated with molecular hydrogen-water bathing showed significantly greater improvement than those who were of the control group as evaluated by both PASI and VAS (Table 2 and Fig. 1). Of patients, 24.4% receiving molecular hydrogen-water bathing achieved the end point of at least 75% improvement in PASI score compared with 2.9% of patients of the control group (Pc = 0.022, OR = 0.094, 95%CI = [0.011, 0.777]). Of patients, 56.1% who received bathing achieved at least 50% improvement in PASI compared with only 17.7% of the control group (P = 0.001, OR = 0.168, 95%CI = [0.057, 0.492]). Molecular Hydrogen-water bathing treatment also resulted in substantial improvement in pruritus as measured by VAS. The median change from baseline to week 8 in the bathing group was −2, compared with a median change of 0 in the control group (P = 3.94 × 10−4).

Table 2

Summary of the improvement of Psoriasis Area and Severity Index (PASI) and visual analog scale (VAS) at week 8.

The Hydrogen-water bathing group The control group Pvalue
Baseline PASI score Baseline PASI score
Mild Moderate Severe Total Mild Moderate Severe Total
(N = 26) (N = 11) (N = 4) (N = 41) (N = 24) (N = 9) (N = 1) (N = 34)
PASI (%) >PASI90 1 (2.4) 1 (2.4) 0 2 (4.8) 0 0 0 0 >0.05
>PASI75 5 (12.2) 3 (7.3) 2 (4.9) 10 (24.4) 1 (2.9) 0 0 1 (2.9) 0.022*
>PASI50 13 (31.7) 8 (19.5) 2 (4.9) 23 (56.1) 4 (11.8) 2 (5.9) 0 6 (17.6) 0.001
VAS improvement (%) ≤−5 3 (7.3) 0 (0) 0.31*
≤−3 9 (22.0) 1 (2.9) 0.04*
<0 21 (51.2) 7 (20.6) 0.006
≥0 20 (48.8) 27 (79.4) 0.006

*The corrected P (Pc) values were adjusted by using Yate’s correction for continuity.

An external file that holds a picture, illustration, etc. Object name is 41598_2018_26388_Fig1_HTML.jpg

Clinical improvement of psoriasis of an 8-week course of molecular hydrogen-water bathing therapy. Case 1: A 64-year-old psoriasis patient at baseline (PASI 16.4, a,b) and after the bathing therapy (PASI 1.8, c,d). Although he had been treated with acitretin capsules 30 mg daily for more than 4 months, the psoriatic lesions had not improved except for the partially reduced scale on the plaque. He refused to increase the drug dose due to intolerable dryness and chapping of the mucous membranes. Case 2: A 40-year-old psoriasis patient at baseline (PASI 21.1, a,b) and after the last bathing therapy (PASI 4.1, c,d). He complained of severely itching and treatment-resistant lesions (acitretin capsules 40 mg daily for more than 6 months), and after bathing therapy he was able to reduce the dose. Case 3: A 43-year-old psoriasis patient at baseline (PASI 20.2, a,b) and after the last bathing therapy (PASI 4.8, c,d). This man had been continuously treated with methotrexate 5 mg weekly for more than 10 months and was able to reduce the dose successfully after bathing therapy. Note that patients experienced similar responses in the areas not shown.

Improvement of parapsoriasis en plaques

Six patients were included: 1 man and 5 women, with mean age of 32.8 ± 4.9 (range: 25–40) years and mean course duration of 34.4 ± 31.1 (range: 12–96) months. Four patients were categorized as LPP and two as SPP. Features of the patients were presented in Table 3. In all patients, an improvement in the morphology or distribution of lesions had occurred (Fig. 2). Complete response was observed in 33.3% of patients (2/6), partial response in 66.7% (4/6).

Table 3

Characteristics and the clinical outcomes of patients with parapsoriasis en plaques.

Patients Sex/Age Type of parasporiasis Distribution at initial presentation Morphology at initial presentation Duration of disease (month) Clinical response at week 8
1 F/40 LPP trunk and extremities patch, plaque 25 PR
2 F/31 LPP trunk papule, patch 12 PR
3 F/33 SPP trunk and extremities papule, patch, plaque 28 PR
4 F/33 SPP trunk papule, patch 15 PR
5 M/35 LPP trunk and extremities patch, plaque 30 CR
6 F/25 LPP trunk and extremities patch, plaque 96 CR

SPP: small plaque parapsoriasis; LPP: large plaque parapsoriasis; PR: partial response; CR: complete response.

An external file that holds a picture, illustration, etc. Object name is 41598_2018_26388_Fig2_HTML.jpg

Clinical evaluation of a patient of parapsoriasis en plaques who achieved complete response rapidly 4 weeks after molecular hydrogen-water bathing. A 35-year-old man with large plaque parapsoriasis had been followed up for 30 months and during that time two biopsies were taken showing no progression. He had suffered flare-up after 10-month narrow-band UVB therapy and failed to have evident improvement in the later 6-month phototherapy despite of increasing the power. Even if only 4 weeks, his lesions rapidly achieved significant improvements without concomitant therapy (a). The Hematoxylin-eosin stain shows mildly hyperkeratotic and focally parakeratotic epidermis with moderately dense superficial perivascular infiltrate. Lymphoid cells are mostly small, cytologically normal lymphocytes, and there is focal single-cell epidermotropism (b).

Adverse events

Two psoriasis patients complained of the temperature of the molecular hydrogen water. The discomfort was relieved once the actual temperature was adjusted according to the satisfaction of patients. No other adverse reactions were found during the study.

Discussion

The results of the parallel-controlled trial demonstrated that molecular hydrogen-water bathing therapy led to significant improvements in psoriasis for the majority of patients. The response rate observed was obviously higher than those seen with Alefacept and fumaric acid esters; and was similar to those seen with Efalizumab, low dose of oral methotrexate (MTX) (5–15 mg/week) and cyclosporine A (1.25 mg/kg/day). Furthermore, patients receiving molecular hydrogen-water bathing showed rapid onset of improvement from baseline. Approximately one forth of patients showed at least 75% improvement in PASI score 8 weeks after their initial bath, a level of response that has only been observed after 12 or more weeks of therapy in patients receiving some biologic agents,,. Patients treated with molecular hydrogen-water bathing also showed substantial improvement in pruritus as assessed by VAS. This is beneficial to the quality of life of psoriasis, which is considered to be similar to, if not worse than, that of other major chronic diseases. Although concomitant treatment was used for the skin lesions, it should be noted that the dosage of MTX, UVB phototherapy and systemic retinoids concomitantly used were not effective for at least 4 months prior to participation in the present study. Surprisingly, 6 patients were able to reduce or even stop the drug dosage (4 patients: acitretin; 2 patients: MTX) after the bathing course. Although the possibility that the improvements were caused by concomitant treatment cannot be fully excluded, it is indicated that the quick relief of symptom was in great part owing to the bathing therapy.

To parapsoriasis en plaques, our result suggested that molecular hydrogen-water bathing was rapidly effective and safe for the control of the disease with 66.7% partial response and 33.3% complete response. Currently, PUVA and narrow-band UVB are used as main treatment options for parapsoriasis en plaques with up to 80% complete remission rates and a median time to clearance of 2–6 months,,. In general, UVB is preferred in patients with patches and thin plaques and PUVA photochemotherapy should be used for patients with thick plaques, with phototypes ≥III and unresponsive to UVB. However, in addition to requirement of long time to induce the response and the maintenance, all these therapies are associated with potential risk of photocarcinogenesis and photoaging limits their long-term use.

Psoriasis and parapsoriasis en plaques are known as representative diseases that show the orchestrated mechanisms of chronic inflammation. The clinical effectiveness of molecular hydrogen-water may partially be explained by H2 selectively scavenger ability against highly active oxidants, such as hydroxyl radical and peroxynitrite, and cytoprotective effects against oxidative stress. Hydroxyl radical is known as a major trigger of the chain reaction of free radicals, and the absence of the specific scavenger of this species spontaneously causes oxidative states in chronic inflammation,. Thus, H2 may have an advantage to suppress the chain reaction, which produces lipid peroxide and leads to the generation of oxidative stress markers, such as malondialdehyde (MDA) which has been proved to be in association with the exacerbation of psoriasis. Another target of H2, peroxynitrite, which is generated from the reaction of nitric oxide with superoxide, activates p38 MAPK pathways which are related to production of inflammatory cytokines, such as TNF-α,IL-6, IL-8 and many others, resulting in the development of plaque of psoriasis. Subsequent studies indicate that the effect of H2 is mediated by Nrf2-Keap1 system,, a transcriptional factor known to be an activator of intrinsic protective mechanisms against oxidative stress, but the mechanisms remain to be solved. However, radical scavenging effects of H2cannot fully explain the anti-inflammatory and anti-apoptotic effects, which should involve a number of fine-tuned signaling pathways. Studies also have shown that H2 suppresses signaling pathways in allergies and inflammation without directly scavenging reactive oxygen/nitrogen species.

In fact, anti-oxidant therapies to psoriasis have already been tested, e.g. using fumaric acid esters particularly in Germany. However, most of them exhibited limited therapeutic success. Furthermore, recent studies suggested that some ROS act as signaling messengers to regulate a wide variety of physiological process,. In view of this background, an ideal antioxidant is expected to mitigate excess oxidative stress, but not disturb redox homeostasis. H2 has the capability to scavenge specifically potent ROS but does not react with those that have important physiological roles. The safety of H2 is also established by its intrinsic production in the human body and inertness against biogenic components. It has been already used for the prevention of decompression sickness in deep divers. The clinical practice of H2 in the treatment of chronic inflammatory disease was recently attempted in patients of rheumatoid arthritis (RA). Moreover, a latest case report suggested H2 could relieve psoriasis-associated skin lesions and arthritis. Apart from other methods of application,molecular hydrogen-water bathing is a new approach highlights by its skin-directed, safe and painless administration and can be carried out in daily life.

Regarding the present study, our results showed a decreased trend of BMI in psoriasis patients treated with bathing therapy without any lipid-lowering interventions. This result matches those of previous studies, which have demonstrated the clinical improvement in patients with psoriasis was associated with a reduction in the levels of lipid peroxidation and an increased serum antioxidant capacity. In addition, it should be noted that the itching sensation was markedly reduced in most cases. The influence of molecular hydrogen water on itching sensation suggests the presence of neurogenic inflammation associated with ROS in the psoriatic lesion and the possibility of a therapeutic approach similar to that for neurological inflammatory disorders. Some limitations of this study need to be pointed out. As an open trial of limited sample size, this study may include selection bias although the baseline characteristics of the psoriasis groups including primary PASI and VAS scores showed well balanced. Attention should be paid that the patients receiving molecular hydrogen-bathing therapy are those who have failed to conventional treatment for more than 4 months. This at least implied the disease activities of these “refractory” patients were in less stable condition. Secondly, this study did not involve a placebo control group owing to the ethics concern. However, all the ones of the control group had received tap-water bathing more than twice a week during this study. Thus, the control group of psoriasis was administered with the combination therapy of the conventional therapy and the placebo (tap-water) bathing.

In summary, patients with psoriasis and parapsoriasis en plaques who were treated with molecular hydrogen-water bathing therapy achieved significant and rapid improvement in disease severity and quality of life. We suggested that molecular hydrogen-water bathing therapy could fulfill the unmet need for an alternative therapeutic option for these patients. Further large randomized placebo-controlled trials are required to verify and extend these results. The mechanism and long-term efficacy of molecular hydrogen-water in these diseases are also warranted.

Methods

Patients

Forty-one patients of psoriasis and six patients of parapsoriasis en plaques were enrolled from February 2016 to April 2017 from Huashan Hospital affiliated to Fudan University and Huadong Hospital affiliated to Fudan University. The control group of psoriasis included thirty-four patients recruited from the dermatology clinics of Huashan Hospital. The study was registered and approved by China Ethics Committee of Registering Clinical Trials (ChiCTR-ONC-17013055, 2017/10/20). All patients signed an informed consent form and agreed to publish identifying information or images. All methods were performed in accordance with the relevant guidelines and regulation.

Patients of psoriasis had a history of plaque psoriasis for a minimum of 12 months. Among them, 21 patients were resistant to topical corticosteroid and calcipotriol ointments; the rest of patients suffered conventional treatment failure or failed to reduce the existing dosage of drugs beyond topical corticosteroid and calcipotriol ointments for more than 4 months. The failed therapeutic options include UVB phototherapy (10/41), MTX (3/41), and systemic retinoids (7/41). All the patients declined treatment of other drugs (include biologics) due to financial issues and safety concern. Patients of parapsoriasis en plaques were diagnosed based on clinical, histopathological and immunohistochemical findings (SPP: 2/6, LPP: 4/6). They had been followed up for more than 8 months. Among them, 4 patients had received UVA or narrow-band UVB therapy for more than 6 months without evident improvements. Two patients suffered flare-ups during phototherapy. All biopsies reported dense lymphocytic infiltrates, occasionally with lymphocyte exocytosis. None of the patients had axillary or inguinal lymphadenopathy. The laboratory results of all patients were unremarkable. Patients with serious cardiovascular diseases or infectious diseases, and those who were unable to receive treatment regularly were excluded.

During the duration of molecular hydrogen-water bathing therapy, the present treatments of psoriasis patients were continued the same as before (except for drug tapering), including systemic and topical therapy. The patients of the psoriasis-controlled group were administered the same traditional Chinese patent medicine called “Qu-Yin oral solution”, topical treatment of corticosteroid and calcipotriol ointments. One major ingredient of this widely-used solution is glycyrrhizin, which has been evidenced to enhance the clinical response of psoriasis with its anti-inflammatory and immune-modulating effect. All the ones of the control group had received tap-water bathing more than twice a week during this study. Patients of parapsoriasis en plaques did not use any concomitant therapy, except for topical corticosteroid and emollients.

Molecular Hydrogen water bathing

Molecular Hydrogen-water bathing was administrated through skin by immersing whole body in the molecular hydrogen-water twice a week (interval of 3 days). Each bathing took 10 to 15 minutes. molecular Hydrogen water bathing paused one week in case of menstruation in female subjects. The molecular hydrogen-water bathing machine (provided by Shanghai Yiquan Investment Limited Partnership) freshly prepared molecular hydrogen water using nanobubble technology to dissolve hydrogen gas into pure deionized water. In briefly it contained the following process:

(1) Tap-water passed through a filtration system (composed of quartz sand, activated carbon, ultrafiltration and reverse osmosis membrane) and an ultraviolet disinfection unit to be deionized and disinfected.

(2) molecular Hydrogen generator electrolyzed treated tap-water into oxygen and molecular hydrogen and then collected pure molecular hydrogen gas.

(3) molecular Hydrogen gas was forced into micro-nano-level bubbles and the bubbles were then dissolved directly and evenly into deionized water. The freshly prepared molecular hydrogen water had the following physical and chemical characteristics: (1) pH 6.8–7.3.

(2) Temperature ranged from 38 to 42 °C (the actual temperature based on the satisfaction of patients).

(3) High content of dissolved molecular hydrogen with a concentration of 1.0 ppm (for reference, the dissolved molecular hydrogen of tap-water is less than 0.001 ppm).

(4) With an extremely negative oxidation reduction potential (ORP) of −580 mV~ −650 mV (for reference, tap water: +250 mV~ +350 mV). Each time before therapy the same equipment was used to test pH, temperature, ORP (RM-30P, DKK-TOA Corp., Japan) and molecular hydrogen concentration (ENH-1000, Trustlex Corp., Japan) to make sure molecular hydrogen water having the same properties.

Efficacy evaluation

Psoriasis

Clinical assessments including physical examinations, vital signs, concomitant medications, adverse events and measures of psoriasis activity (PASI scores and photos) were estimated at baseline and following each bathing treatment. For the PASI, patients are rated on the basis of erythema, scaling, and thickness divided in four anatomical parts (head, trunk, upper extremities, and lower extremities). The area of each anatomical part is factored into the overall value. The score was divided into mild (1–10), moderate (10–20) and severe (>20) PASI. The PASI score at week 8 was the predefined efficacy endpoint, where a favorable response was an improvement of at least 50% from the baseline PASI. The pruritus of the skin lesions was measured by the VAS for itching  .

Parapsoriasis en plaques

Clinical responses were evaluated at week 8, classified as complete response, >90% clearance of lesions; partial response, 50–90% clearance; no response, <50% clearance with persistent skin lesions despite continuing treatment. The pruritus of the skin lesions was measured by VAS as well.

Statistical analysis

Analyses of effectiveness endpoints were based on the intent-to-treat (ITT) population. The last-observation-carried-forward (LOCF) analysis was used to estimate the missing data for effectiveness variables. Descriptive variables were summarized by number (percentages), median or mean ± standard deviation. Measurement data were compared using paried t-test. Comparison of the count data or level data was performed using χ2 tests, Fisher’s exact tests or Mann-Whitney U tests. Odds ratio (OR) were calculated with Haldane’s modification, which adds 0.5 to all cells to accommodate possible zero countsP values were two-tailed. Differences were considered significant at P < 0.05. The corrected P (Pc) values were adjusted by using Yate’s correction for continuity. Data were analyzed by SPSS17.0 (SPSS Inc., Chicago, IL, USA) software.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

 

Logo of scirep

About Editorial Board For Authors Scientific Reports
. 2018; 8: 8051.
Published online 2018 May 23. doi:  [10.1038/s41598-018-26388-3]
PMCID: PMC5966409
PMID: 29795283
1Department of Dermatology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd., Jing’an District, Shanghai, China
2Department of Dermatology, Huadong Hospital, Fudan University, 221 West Yan-an Rd., Jing’an District, Shanghai, China
3Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Xuhui District, Shanghai, China
4Department of Dermatology, Shanghai Dermatology Hospital, 200 Wuyi Road, Chang-ning District, Shanghai, China
5Department of Dermatology, Changhai Hospital, The Second Military Medical University, 168 Changhai Rd., Shanghai, China
6Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, China
Xiaoqun Luo, moc.621@319nuqoaixoul.
corresponding authorCorresponding author.
#Contributed equally.

Acknowledgements

We would like to thank Shanghai Yiquan Investment Limited Partnership for the technical support. This study was supported by the HOPE Program launched by the Branch Association of Hydrogen Biomedicine, China-Japan Medical Science and Technology Exchanges Association.

 

Author Contributions

Qinyuan Zhu wrote the main manuscript text, analyzed the data and prepared figures. Xiaoqun Luo, Yueshen Wu, Yongmei Li, Erhong Dai, Jianhua Wu and Bin Fan provided follow-up visits to the patients and collected the clinical data. Zihua Chen, Lanting Wang, Hao Xiong and Li Ping contributed to the supervision of regular molecular hydrogen-water bathing therapy. Xiaoqun Luo was in charge of the design and execution of this study. All authors reviewed the manuscript.

Notes

Competing Interests

The authors declare no competing interests.

Footnotes

Qinyuan Zhu and Yueshen Wu contributed equally to this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509. doi: 10.1056/NEJMra0804595. [PubMed] [CrossRef]
2. Sehgal VN, Srivastava G, Aggarwal AK. Parapsoriasis: a complex issue. Skinmed. 2007;6:280–286. doi: 10.1111/j.1540-9740.2007.06490.x. [PubMed] [CrossRef]
3. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445:866–873. doi: 10.1038/nature05663. [PubMed] [CrossRef]
4. Mansouri Y, Goldenberg G. New systemic therapies for psoriasis. Cutis. 2015;95:155–160. [PubMed]
5. Johnson-Huang LM, Lowes MA, Krueger JG. Putting together the psoriasis puzzle: an update on developing targeted therapies. Dis. Model. Mech. 2012;5:423–433. doi: 10.1242/dmm.009092.[PMC free article] [PubMed] [CrossRef]
6. Aydogan K, et al. Efficacy of low-dose ultraviolet a-1 phototherapy for parapsoriasis/early-stage mycosis fungoides. Photochem. Photobiol. 2014;90:873–877. [PubMed]
7. Christophers E. Psoriasis–epidemiology and clinical spectrum. Clin. Exp. Dermatol. 2001;26:314–320. doi: 10.1046/j.1365-2230.2001.00832.x. [PubMed] [CrossRef]
8. Rapp SR, Feldman SR, Exum ML, Fleischer AB, Reboussin DM. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol. 1999;41:401–407. doi: 10.1016/S0190-9622(99)70112-X. [PubMed] [CrossRef]
9. Weiss SC, et al. Quantifying the harmful effect of psoriasis on health-related quality of life. J. Am. Acad. Dermatol. 2002;47:512–518. doi: 10.1067/mjd.2002.122755. [PubMed] [CrossRef]
10. Haeffner AC, Smoller BR, Zepter K, Wood GS. Differentiation and clonality of lesional lymphocytes in small plaque parapsoriasis. Arch. Dermatol. 1995;131:321–324. doi: 10.1001/archderm.1995.01690150085017. [PubMed] [CrossRef]
11. Kikuchi A, et al. Parapsoriasis en plaques: its potential for progression to malignant lymphoma. J. Am. Acad. Dermatol. 1993;29:419–422. doi: 10.1016/0190-9622(93)70204-7. [PubMed] [CrossRef]
12. Ackerman AB. If small plaque (digitate) parapsoriasis is a cutaneous T-cell lymphoma, even an ‘abortive’ one, it must be mycosis fungoides! Arch. Dermatol. 1996;132:562–566. doi: 10.1001/archderm.1996.03890290096013. [PubMed] [CrossRef]
13. Raskin CA. Small plaque parapsoriasis and mycosis fungoides. Arch. Dermatol. 1996;132:1388. doi: 10.1001/archderm.1996.03890350132026. [PubMed] [CrossRef]
14. Weinberg JM, Tutrone WD. Biologic therapy for psoriasis: the T-cell-targeted therapies efalizumab and alefacept. Cutis. 2003;71:41–45. [PubMed]
15. Kadam DP, Suryakar AN, Ankush RD, Kadam CY, Deshpande KH. Role of oxidative stress in various stages of psoriasis. Indian J. Clin. Biochem. 2010;25:388–392. doi: 10.1007/s12291-010-0043-9.[PMC free article] [PubMed] [CrossRef]
16. Ichihara M, Sobue S, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen – comprehensive review of 321 original articles. Med. Gas. Res. 2015;5:12. doi: 10.1186/s13618-015-0035-1. [PMC free article] [PubMed] [CrossRef]
17. Ohsawa I, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577. [PubMed] [CrossRef]
18. Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol. 2015;555:289–317. doi: 10.1016/bs.mie.2014.11.038. [PubMed][CrossRef]
19. Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 2011;17:2241–2252. doi: 10.2174/138161211797052664.[PMC free article] [PubMed] [CrossRef]
20. Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic. Res. 2010;44:971–982. doi: 10.3109/10715762.2010.500328. [PubMed][CrossRef]
21. Ishibashi T, et al. Improvement of psoriasis-associated arthritis and skin lesions by treatment with molecular hydrogen: A report of three cases. Mol. Med. Rep. 2015;12:2757–2764. doi: 10.3892/mmr.2015.3707. [PubMed] [CrossRef]
22. Brimhall AK, King LN, Licciardone JC, Jacobe H, Menter A. Safety and efficacy of alefacept, efalizumab, etanercept and infliximab in treating moderate to severe plaque psoriasis: a meta-analysis of randomized controlled trials. Br. J. Dermatol. 2008;159:274–285. doi: 10.1111/j.1365-2133.2008.08673.x.[PubMed] [CrossRef]
23. Dubertret L, et al. CLinical experience acquired with the efalizumab (Raptiva) (CLEAR) trial in patients with moderate-to-severe plaque psoriasis: results from a phase III international randomized, placebo-controlled trial. Br. J. Dermatol. 2006;155:170–181. doi: 10.1111/j.1365-2133.2006.07344.x.[PubMed] [CrossRef]
24. Ellis CN, Krueger GG, Group ACS. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 2001;345:248–255. doi: 10.1056/NEJM200107263450403. [PubMed] [CrossRef]
25. Schmitt J, et al. Efficacy and safety of systemic treatments for moderate-to-severe psoriasis: meta-analysis of randomized controlled trials. Br. J. Dermatol. 2014;170:274–303. doi: 10.1111/bjd.12663.[PubMed] [CrossRef]
26. Fallah AS, Neumann H, Hop WC, Thio HB. Fumarates vs. methotrexate in moderate to severe chronic plaque psoriasis: a multicentre prospective randomized controlled clinical trial. Br. J. Dermatol. 2011;164:855–861. doi: 10.1111/j.1365-2133.2010.10195.x. [PubMed] [CrossRef]
27. Mease PJ, et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet. 2000;356:385–390. doi: 10.1016/S0140-6736(00)02530-7. [PubMed] [CrossRef]
28. Aydogan K, Karadogan SK, Tunali S, Adim SB, Ozcelik T. Narrowband UVB phototherapy for small plaque parapsoriasis. J. Eur. Acad. Dermatol. Venereol. 2006;20:573–577. doi: 10.1111/j.1468-3083.2006.01567.x. [PubMed] [CrossRef]
29. El-Mofty M, et al. Narrow band UVB (311 nm), psoralen UVB (311 nm) and PUVA therapy in the treatment of early-stage mycosis fungoides: a right-left comparative study. Photodermatol. Photoimmunol. Photomed. 2005;21:281–286. doi: 10.1111/j.1600-0781.2005.00183.x. [PubMed] [CrossRef]
30. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med. 2009;47:469–484. doi: 10.1016/j.freeradbiomed.2009.05.032. [PubMed] [CrossRef]
31. Ishibashi T. Molecular hydrogen: new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr. Pharm. Des. 2013;19:6375–6381. doi: 10.2174/13816128113199990507. [PMC free article] [PubMed] [CrossRef]
32. Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim. Biophys. Acta. 2014;1840:809–817. doi: 10.1016/j.bbagen.2013.03.020. [PubMed] [CrossRef]
33. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol. 2003;17:663–669. doi: 10.1046/j.1468-3083.2003.00751.x. [PubMed][CrossRef]
34. Yu XJ, et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp. Mol. Pathol. 2007;83:413–418. doi: 10.1016/j.yexmp.2007.05.002. [PubMed][CrossRef]
35. Kawamura T, et al. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivoAm. J. Physiol. Lung Cell Mol. Physiol. 2013;304:L646–656. doi: 10.1152/ajplung.00164.2012.[PMC free article] [PubMed] [CrossRef]
36. Zhai X, et al. Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic. Biol. Med. 2013;65:731–741. doi: 10.1016/j.freeradbiomed.2013.08.004. [PubMed] [CrossRef]
37. Itoh T, et al. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem. Biophys. Res. Commun. 2009;389:651–656. doi: 10.1016/j.bbrc.2009.09.047. [PubMed] [CrossRef]
38. Itoh T, et al. Molecular hydrogen inhibits lipopolysaccharide/interferon γ-induced nitric oxide production through modulation of signal transduction in macrophages. Biochem. Biophys. Res. Commun. 2011;411:143–149. doi: 10.1016/j.bbrc.2011.06.116. [PubMed] [CrossRef]
39. Arbiser JL. Fumarate esters as angiogenesis inhibitors: key to action in psoriasis? J. Invest. Dermatol. 2011;131:1189–1191. doi: 10.1038/jid.2011.45. [PubMed] [CrossRef]
40. Liu H, Colavitti R, Rovira II, Finkel T. Redox-dependent transcriptional regulation. Circ. Res. 2005;97:967–974. doi: 10.1161/01.RES.0000188210.72062.10. [PubMed] [CrossRef]
41. Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell Biol. 2007;27:5737–5745. doi: 10.1128/MCB.02265-06. [PMC free article] [PubMed][CrossRef]
42. Ohno K, Ito M, Ichihara M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid. Med. Cell Longev. 2012;35:31–52. [PMC free article][PubMed]
43. Ishibashi T, et al. Therapeutic efficacy of infused molecular hydrogen in saline on rheumatoid arthritis: a randomized, double-blind, placebo-controlled pilot study. Int. Immunopharmacol. 2014;21:468–473. doi: 10.1016/j.intimp.2014.06.001. [PubMed] [CrossRef]
44. Bacchetti T, et al. Oxidative stress and psoriasis: the effect of antitumour necrosis factor-α inhibitor treatment. Br. J. Dermatol. 2013;168:984–989. doi: 10.1111/bjd.12144. [PubMed] [CrossRef]
45. Yu JJ, et al. Compound glycyrrhizin plus conventional therapy for psoriasis vulgaris: a systematic review and meta-analysis of randomized controlled trials. Curr. Med. Res. Opin. 2017;33:279–387. doi: 10.1080/03007995.2016.1254605. [PubMed] [CrossRef]
46. van-de-Kerkhof PC. The Psoriasis Area and Severity Index and alternative approaches for the assessment of severity: persisting areas of confusion. Br. J. Dermatol. 1997;137:661–662. doi: 10.1111/j.1365-2133.1997.tb03819.x. [PubMed] [CrossRef]
47. Carlin CS, Feldman SR, Krueger JG, Menter A, Krueger GG. A 50% reduction in the Psoriasis Area and Severity Index (PASI 50) is a clinically significant endpoint in the assessment of psoriasis. J. Am. Acad. Dermatol. 2004;50:859–866. doi: 10.1016/j.jaad.2003.09.014. [PubMed] [CrossRef]
48. Szepietowski JC, Reich A, Wiśnicka B. Itching in patients suffering from psoriasis. Acta. Dermatovenerol. Croat. 2002;10:221–226. [PubMed]
49. Haldane JB. The estimation and significance of the logarithm of a ratio of frequencies. Ann. Hum. Genet. 1956;20:309–311. doi: 10.1111/j.1469-1809.1955.tb01285.x. [PubMed] [CrossRef]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

molecular hydrogen water for patients with RHEUMATOID ARTHRITIS : an open-label pilot study

Recently, molecular hydrogen (H2) was demonstrated to be a selective scavenger for the hydroxyl radical.

Although its etiology is unknown, the hydroxyl radical has been suggested to be involved in the pathogenesis of Rheumatoid arthritis( a chronic inflammatory disease characterized by the destruction of bone and cartilage..).

We hypothesized that molecular hydrogen H2 in the water could complement conventional therapy by reducing the oxidative stress in Rheumatoid arthritis

The method to prepare water containing extremely high concentration of molecular hydrogen H2 has been developed.

20 patients with rheumatoid arthritis (RA) drank 530 ml of water containing 4 to 5 ppm molecular hydrogen (high H2) water every day for 4 weeks. After a 4-week wash-out period, the patients drank the high molecular hidrogen H2 water for another 4 weeks.

Urinary 8-hydroxydeoxyguanine (8-OHdG) and disease activity (DAS28, using C-reactive protein [CRP] levels) was estimated at the end of each 4-week period.

Results:

Drinking high molecular hydrogen H2 water seems to raise the concentration of molecular hydrogen H2 more than the H2 molecular hydrogen saturated (1.6 ppm) water in vivo.

Urinary 8-OHdG was significantly reduced by 14.3% (p < 0.01) on average. DAS28 also decreased from 3.83 to 3.02 (p < 0.01) during the same period.

After the wash-out period, both the urinary 8-OHdG and the mean
DAS28 decreased, compared to the end of the drinking period.

During the second drinking period, the mean DAS28 was reduced from 2.83 to 2.26 (p < 0.01). Urinary 8-OHdG was not further reduced but remained below the baseline value.

All the 5 patients with early rheumatoid arthritis (duration < 12 months) who did not show antibodies against cyclic citrullinated peptides (ACPAs) achieved remission, and 4 of them became symptom-free at the end of the study.

Conclusions: The results suggest that the hydroxyl radical scavenger -molecular hydrogen H2(dissolved in water) effectively reduces oxidative stress in patients with rheumatoid arthritis. The symptoms of rheumatoid arthritis were significantly improved with high molecular hidrogen H2 water.

 

  • diatomic molecular hydrogen H2- Water Products 

 

 

Consumption of water containing a high
concentration of molecular hydrogen reduces
oxidative stress and disease activity in patients
with rheumatoid arthritis: an open-label pilot
study
Toru Ishibashi1*, Bunpei Sato2
, Mariko Rikitake1
, Tomoki Seo2
, Ryosuke Kurokawa2
, Yuichi Hara1
, Yuji Naritomi1
,
Hiroshi Hara1 and Tetsuhiko Nagao3

* Correspondence: toruishi@haradoi-hospital.com 1
Haradoi Hospital, Department of Rheumatology and Orthopaedic Surgery,
6-40-8 Aoba, Higashi-ku, Fukuoka 813-8588, Japan
Full list of author information is available at the end of the article
MEDICAL GAS
RESEARCH
© 2012 Ishibashi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

doi:10.1186/2045-9912-2-27
Cite this article as: Ishibashi et al.: Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Medical Gas Research 2012 2:27.

 

molecular hydrogen water PERIODONTITIS

Oxidative stress is involved in the pathogenesis of periodontitis. A reduction of oxidative stress by drinking molecular hydrogen-rich water (HW) might be beneficial to periodontal health.

In this pilot study, we compared the effects of non-surgical periodontal treatment with or without drinking molecular hydrogen-rich water HW on periodontitis.

13 patients (3 women, 10 men) with periodontitis were divided into two groups: The control group (n = 6) or the molecular hydrogen-rich water HW group (n = 7). In the molecular hydrogen-rich water HW group, participants consumed molecular hydrogen-rich water HW 4-5 times/day for eight weeks. At two to four weeks, all participants received non-surgical periodontal treatment. Oral examinations were performed at baseline, two, four and eight weeks, and serum was obtained at these time points to evaluate oxidative stress. At baseline, there were no significant differences in periodontal status between the control and molecular hydrogen-rich water HW groups. The molecular hydrogen-rich water HW group showed greater improvements in probing pocket depth and clinical attachment level than the control group at two, four and eight weeks (p < 0.05). The molecular hydrogen-rich water HW group also exhibited an increased serum level of total antioxidant capacity at four weeks, compared to baseline (p < 0.05). Drinking molecular hydrogen-rich water HW enhanced the effects of non-surgical periodontal treatment, thus improving periodontitis.

PMID:26783840
PMCID:PMC4665424
DOI:10.3390/antiox4030513

 

 2015 Jul 9;4(3):513-22. doi: 10.3390/antiox4030513.
Drinking Hydrogen-Rich Water Has Additive Effects on Non-Surgical Periodontal Treatment of Improving Periodontitis: A Pilot Study.

Author information

1
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. tetsuji@md.okayama-u.ac.jp.
2
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. de18053@s.okayama-u.ac.jp.
3
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. dekuni7@md.okayama-u.ac.jp.
4
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. de18019@s.okayama-u.ac.jp.
5
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. de18017@s.okayama-u.ac.jp.
6
Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. t-maru@md.okayama-u.ac.jp.
7
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. tomofu@md.okayama-u.ac.jp.
8
Departments of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. mmorita@md.okayama-u.ac.jp.

Modalities of molecular hydrogen administration(in water, gas or saline) to animals, humans, and plants

 
Modalities of molecular hydrogen administration(in water, gas or saline) to animals, humans, and plants
 
 
Modalities of molecular hydrogen administration are various :
you can drink molecular hydrogen water,inhale molecular hydrogen gas, inject molecular hydrogen rich saline,drink a molecular hydrogen solution,produce molecular hydrogen as intestinal gas when bacteria ferments fruits and vegetables,bath in water with molecular hydrogen, orally take magnesium molecular hydrogen rich tablets, etc
 
The most popular methods of putting molecular  hydrogen in your body are drinking molecular hydrogen water,inhaling molecular hydrogen gas, injecting molecular hydrogen rich saline.
Molecular hydrogen-rich saline, which is almost exclusively used in China, dominates over the others. Hydrogenized saline is administered either by intraperitoneal injection or drip infusion. Molecular hydrogen water is mostly given ad libitum.

Molecular hydrogen gas is usually given by inhaling 1–4 % hydrogen gas, which is below the explosion level (4 %). There is a single report, in which hydrogen gas was injected intraperitoneally [10].

 

Among the various routes of molecular hydrogen administration , the best method still remains uncertain. This is partly because only a few reports have addressed the difference of effects among molecular hydrogen administration methods.

A comparative review was conducted on the consumption of molecular hydrogen H2-rich water, i.p. or intravenous administration of molecular hydrogen  H2-rich saline, and inhalation of molecular hydrogen H2 gas in regards to Molecular hydrogen (water) in the treatment of acute and chronic neurological conditions(Alzheimer’s, Parkinson’s,etc).

The results showed that although molecular hydrogen H2 concentrations in the brain tend to be high after either intravenous administration or inhalation, no significant differences have been observed in comparison with the concentrations after the consumption of molecular hydrogen  H2-rich water and i.p. administration of molecular hydrogen H2-rich saline. Thus, although there have been variations based on the administration method, all methods have been found to result in the presence of molecular hydrogen H2 in the serum and brain tissue.

Liu et al.() measured molecular hydrogen  H2 levels in the arteries, veins, and brain tissues after the inhalation of 2% molecular hydrogen H2 gas. They found that arterial molecular hydrogen H2 peaked at 30 min after administration, whereas venous and brain tissue molecular hydrogen H2 peaked at 45 min after administration. They reported that molecular hydrogen  H2 levels were similar in arteries and brain tissues.

This demonstrated that molecular hydrogen  H2 migrates to the brain tissue regardless of the method of administration(Thus, the studies  might as well have been performed using molecular hydrogen water instead of molecular hydrogen gas or molecular hydrogen saline).

Furthermore, keep in mind that  crossing the blood–brain barrier (BBB) is a very difficult task to achieve for many substances , thus the fact that molecular hydrogen  H2 crosses the BBB and migrates to the brain tissue regardless of the method of administration (including by drinking molecular hydrogen water – which is the easiest method of administration molecular hydrogen ) is a strong indicator that one can benefit from drinking molecular hydrogen water just as much as from any other method of  administration molecular hydrogen

A dose–response effect of molecular  hydrogen is observed in drinking molecular  hydrogen-rich water [9497].

A similar dose–response effect is also observed in inhaled molecular  hydrogen gas [11798].

However, when molecular hydrogen concentrations in drinking water and in inhaled gas are compared, there is no dose–response effect.

Molecular hydrogen-rich water generally shows a more prominent effect than molecular hydrogen gas, although the amount of hydrogen taken up by hydrogen water is ~100 times less than that given by hydrogen gas [11].

We have showed that drinking molecular hydrogen water, but not continuous molecular hydrogen gas exposure, prevented development of 6-hydorxydopamine-induced Parkinson’s disease in rats [11].

In addition, we recently showed that continuous exposure to molecular hydrogen gas and ad libitum per os administration of molecular hydrogen water modulated signaling pathways and gene expressions in different manners in mice [12].

We demonstrated that molecular hydrogen-responsive genes are divided into four groups: genes that respond favorably to molecular hydrogen gas, those that respond exclusively to molecular hydrogen water, those that respond to both molecular hydrogen gas and water, and those that respond only to the simultaneous administration of molecular hydrogen gas and water (Fig. 2).

As molecular hydrogen water and gas increase the molecular hydrogen concentrations in the rodent body to a similar level [12], the difference in the organs exposed to a high concentration of molecular  hydrogen, the rise time of molecular hydrogen concentration, and/or the area under the curve of molecular hydrogen concentration may account for the difference in the modulated genes.

On the other hand, a collation of molecular hydrogen reports indicate that a similar degree of effects can be observed with different modalities of administration. For example, the marked effect of molecular  hydrogen on a mouse model of LPS-induced acute lung injury has been reported by four different groups with three different modalities:molecular hydrogen gas [1314], molecular hydrogen water [15], and molecular hydrogen-rich saline [1416].

Similarly, the dramatic effect of molecular hydrogen on animal models of acute myocardial infarction has been reported by eight different groups with two different modalities: molecular hydrogen gas [17181920] and molecular hydrogen-rich saline [21222324].

To clarify the difference of molecular  hydrogen’s effects with different modalities of administration, each research group should scrutinize the difference of the effects between molecular hydrogen gas, molecular hydrogen water, and molecular hydrogen-rich saline. This would uncover the best modality for each disease model, IF ANY, and also the optimal molecular hydrogen dose.

Fig. 2

Four groups of genes that show different responses to molecular hydrogen water and/or gas [12] . aBcl6 responds to molecular  hydrogen gas more than molecular hydrogen water. bG6pc responds only to molecular hydrogen water. cWee1 responds to both molecular hydrogen water and gas. dEgr1 responds only to simultaneous administration of molecular hydrogen water and gas

In order to use molecular hydrogen in clinical situations, it is essential to implement systematic clinical testing. These systems are either already in place or are under consideration at the leading Japanese universities and medical institutions.

The results of several clinical studies of molecular hydrogen-rich drinking water were recently released.

Kajiya et al. [15] reported that symptoms of intestinal inflammation prominently improved in mice with inflammatory bowel disease given molecular hydrogen-rich drinking water.

Fujita et al. succeeded in reducing the symptoms of drug-induced Parkinsonʼs disease by having mice drink molecular hydrogen-rich water [28].

Using a kidney transplant mouse model, our group also reported that kidney graft functions were maintained and imperfect grafts caused by chronic rejection were prevented in mice that drank molecular hydrogen-rich water every day [29].

Kawai et al. found that molecular hydrogen-rich drinking water reduced hepatocarcinogenesis in a nonalcoholic steatohepatitis-hepatocellular carcinoma mouse model [7].

Molecular hydrogen water is also effective in dentistry as shown by its effects on periodontitis, which is marked by gingival bleeding,
the development of periodontal pockets, the destruction of connective tissue, and the loss of alveolar bone [8,9].

In China, the oral intake of molecular hydrogen-rich water by hepatitis B virus (HBV) patients was tested. After hydrogen water treatment (1,200-1,800 mL/day, twice daily, for 6 consecutive weeks), oxidative stress did not change in the routine-treatment group but markedly improved in the molecular hydrogen-treatment group, and it was associated with reduced HBV DNA levels [41]. Thus, the results from a number of human trials indicate that drinking molecular hydrogen-rich water is safe and well-tolerated and significantly improves various diseases.

Molecular Hydrogen is licensed as a food additive in Japan, and hydrogen-rich water is already being sold as a safe drinking product in Japan. Water filters /tablets with magnesium  and hydrogen-rich water made by electrolysis(electric water ionizers and molecular hydrogen water generators) are also being tested for acute/sub-acute toxicity, mutagenicity, etc. with the goal of using them for medical treatments.The safety of these methods has been con-firmed and reported [36,37].

Molecular hydrogen-rich water is expected to be easily used in place of regular everyday drinking water and will effectively treat chronic maladies such as lifestyle-related diseases.

Once again one can benefit from molecular hydrogen  H2 regardless of the method of administration (including from drinking molecular hydrogen water).

In addition, molecular hydrogen water is both safe and easy to drink at home( we think it’s easier to drink molecular hydrogen water than injecting molecular hydrogen rich saline or inhaling molecular hydrogen gas)

 

 

references :

http://ousar.lib.okayama-u.ac.jp/files/public/5/54590/20161108092537681027/70_5_331.pdf
 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525017/
 

https://medicalgasresearch.biomedcentral.com/articles/10.1186/s13618-015-0035-1

 

Molecular Hydrogen Water FAQ

Frequently Asked Questions about Molecular Hydrogen Water

  1. What is molecular hydrogen water?

Molecular hydrogen water or hydrogen-rich water ( hydrogen-enriched water)  means water (H2O) with dissolved hydrogen gas (H2) in it.  

  1. Isn’t ( molecular ) hydrogen gas explosive?

Yes, it is VERY explosive. Molecular hydrogen is the most energy-dense molecule by mass.  

But, when the molecular hydrogen gas is dissolved in water it is not explosive anymore,

Even when molecular hydrogen is in the air, it is only flammable above a 4.6% concentration by volume, which is not a concern when talking about molecular hydrogen  water.

 

  1. Doesn’t water H2O already have hydrogen in it  ?

The water molecule has 2 hydrogen atoms, chemically bound to the oxygen atom. This is different from the molecular hydrogen gas (H2), which is just two hydrogen atoms bound only to each other.The H2 -hydrogen molecules are not tied up to water H2O

In order for the dissolved molecular hydrogen gas (H2) to beneficial for humans, it must be in an unbound form, and therefore available for therapeutic benefit.

Virtually everything has hydrogen atoms in it, but those hydrogen atoms are chemically tied up with other things.  In molecular hydrogen rich water, the hydrogen molecule that is shown to be therapeutic is the available water dissolved hydrogen molecule in its diatomic form, called (dissolved diatomic) molecular hydrogen.

 

  1. I thought that if water “rich in hydrogen ”, it must be acidic?

If the water is rich in positive hydrogen ions (H+). then YES, water is acidic(pH<7).

But  when talking about molecular hydrogen rich water of , we’re talking about neutral (ph=7) hydrogen gas (H2), which is two hydrogen atoms tied together –  hydrogen in its diatomic molecular form.

It can be confusing to hear “hydrogen water” because we usually think of hydrogen (meaning the hydrogen ion, H+) as acidic, and that is basically the definition of pH.  The p stands for potential or power, meaning a mathematical exponent (in this case a logarithmic function), and the H stands for the hydrogen ion, which is just a proton and no electron. So pH literally means the logarithmic concentration of the hydrogen ion.

But when we say “molecular hydrogen rich  water” we are referring to diatomic hydrogen or molecular hydrogen, which is a neutral(ph=7) gas of H2 molecules (one H2 is made of 2 atoms of hydrogen bond into a  molecule),  that is dissolved in the water.

 

  1. I read that if you add hydrogen to water, then it makes hydrogen peroxide?

Molecular hydrogen (H2) gas does NOT bond to NOR react with the water molecules, it just dissolves into the water. Thus it does not create some novel molecule like H4O, which would in fact be chemically impossible to form. Water has the chemical formula H2O,  and hydrogen peroxide has the chemical formula H2O2, which by comparison contains an extra oxygen, not hydrogen.

Molecular hydrogen water and hydrogen peroxide are completely different.

 

  1. Since molecular hydrogen gas doesn’t dissolve very well in water, how can there even be enough for it to be beneficial?

It is true that molecular hydrogen is not very water soluble as it is a neutral, non-polar molecule with a solubility of 1.6 mg/L, which is relatively low.

But when we consider that molecular hydrogen is the lightest molecule in the universe, we really need to compare the number of molecules as opposed to the number of grams.

For reference, vitamin C (176.2 g/mole) weighs 88 times more than hydrogen gas (2 g/mole).

Therefore, molecular hydrogen rich water at a concentration of 1.6 mg/L would have more “antioxidant” molecules than 100 mg of vitamin C, as there are more total molecules in 1.6 mg of hydrogen compared 100 mg of vitamin C. That is, 0.8 mmoles of H2 vs. about 0.6 mmoles of vitamin C.

But more importantly, hundreds of scientific studies clearly show that these concentrations of molecular hydrogen in water are effective.

 

  1. Won’t any dissolved molecular hydrogen gas immediately evaporate out of the water?

Yes, molecular hydrogen as any gas does immediately start coming /evaporate out of the water, but it doesn’t just vanish immediately. Depending on the surface area, agitation, etc., the molecular hydrogen gas can stay in the water for a few hours or longer before it drops below a therapeutic level. 

 

  1. How much molecular hydrogen water should I drink to get the benefits?

That is the same question scientists are asking and is still under investigation. However, the human studies generally provide about 1-3 mg of molecular hydrogen H2, and these doses show statistically significant benefits. So, if your molecular hydrogen water has a concentration of 1 mg/L (equivalent to 1 ppm, parts per million), then 2 liters of molecular hydrogen water will give you 2 mg of H2. Although the effective concentration for some people and some diseases may be lower and/or higher, these doses are simply what have been seen to expert benefits. (see this article also).

 

  1. Does more molecular hydrogen equal more benefits?

Maybe, maybe not…. there is obviously a minimum required amount of molecular hydrogen (water )needed to offer any health benefits, which may vary from person to person. Importantly, it appears that you cannot get too much molecular hydrogen, as it doesn’t build up in your body—you just exhale it out.  In many cases there is a clear dose-dependent effect, meaning the more molecular hydrogen (water) the better or greater the effect. There are also many anecdotal reports that suggest that consuming more molecular hydrogen (water) may offer even more benefits. But more research needs to be done in this area.

 

  1. Is molecular hydrogen (water) safe (for consumption)?

YES. Molecular Hydrogen  gas (in water)  has been shown to be very safe at concentrations hundreds of times higher than what is being used for therapy.  Here are a few examples:

Molecular Hydrogen’s safety was first shown in the late 1800s, where molecular hydrogen gas was used to locate gunshot wounds in the intestines. The reports showed that there were never any toxic effects or irritation to even the most sensitive tissues.

Another good example of its safety is that  molecular hydrogen gas has been used in deep sea diving since 1943 (at very high concentrations) to prevent decompression sickness. Studies have shown no toxic effects from  molecular hydrogen when at very high levels and pressures of 98.87% H2 and 1.26% O2 at 19.1 atm.

Furthermore, molecular hydrogen gas is natural to the body because after a fiber-rich meal, our gut bacteria can produce liters of molecular hydrogen on a daily basis (which is yet another benefit from eating fruits and vegetables).

In short, molecular hydrogen gas is very natural to our bodies, not like  a foreign or alien substance that can only be synthesized in a chemistry lab.

  1. When was molecular hydrogen’s therapeutic benefits first discovered?

The earliest account of molecular hydrogen gas having medicinal properties was in 1798, for things like inflammation. But, it didn’t become a popular topic among scientists until 2007, when an article about the benefits of molecular hydrogen was published in the prestigious journal of Nature Medicine by Dr. Ohta’s group.

 

 

Benefits of molecular hydrogen (H2 ) Water 3

Benefits of Molecular Hydrogen in Water – part 3

Molecular Hydrogen (water) is  a single natural way to reduce pain and inflammation, to improve your energy, cognitive function, exercise performance and recovery ,to neutralize harmful free radicals and support your body’s enzyme and antioxidant production & to also hydrate your cells plus generally support your overall health and wellness. Scientists have discovered that molecular hydrogen H2 water – molecular hydrogen or diatomic hydrogen water – has all of these properties and more. molecular hydrogen H2 (water)  has become a major area of scientific research.

The Healing Property In Healing Waters

hydrogen water

Around the world there are well-known natural molecular  hydrogen rich water sources or springs that offer healing or curative properties. Scientists have recently found H2 in samples analyzed from Nordenau (Germany), Tlacote (Mexico) and Hita Tenryosui, Japan1-3. The existence of molecular hydrogen H2 in these water springs (and others) could be a result of water reacting with alkali-earth metals, or from molecular hydrogen gas-producing bacteria and algae4. Regardless, the available science regarding molecular hydrogen H2 and its benefits seems to explain these H2 waters healing properties.

What is Molecular Hydrogen water?

Molecular Hydrogen water is water that has molecular hydrogen H2 gas in it.Hydrogen is the lightest and simplest element appearing first on the Periodic Table of Elements. Molecular hydrogen is also the smallest molecule consisting of just one electron and one proton. Because of its tiny size, it is able to permeate even sub-cellular structures such as the mitochondria making it extremely bioavailable. It even crosses the blood-brain barrier. It is colorless, odorless, non-metallic, non-toxic and tasteless.

Molecular Hydrogen water Research

 

The body of science regarding health benefits of molecular hydrogen H2  (water)  has advanced rapidly in recent years thanks to the studies done by research scientists around the globe. Over 600 peer-reviewed articles have been published on the impact of molecular hydrogen  H2 on humans, animals, and individual cells. It shows that molecular hydrogen H2 (water)  regulates over 200 biomolecules and appears to provide benefit in 166 health conditions and disease models, affecting virtually every organ in the human body. Molecular hydrogen H2 operates on human metabolism in three primary areas:

• Molecular hydrogen H2  (water) rapidly and easily converts toxic free (hydroxyl OH-) radicals to water (H2 + 2 OH – > 2 H2O);
• Molecular hydrogen  H2 (water)  maintains antioxidant homeostasis. In other words, the body’s own antioxidants are leveraged and maintained; and
• Molecular hydrogen  H2 (water)  supports cell signaling, cell metabolism, and gene expression. This impacts inflammation, obesity, and aging mechanisms.

Molecular Hydrogen water is Safe And Natural.

 

Molecular hydrogen  H2 (water)  is not foreign to the body like a pharmaceutical drug. Your body produces small amounts of Molecular hydrogen  H2 gas from the bacteria in your digestive tract as it digests vegetable fibers, which diffuse into the bloodstream. Research shows that delivering H2 in higher concentrations than your body can produce is much more effective. In fact, drinking hydrogen water was used in most of the studies and is the most effective way to deliver Molecular hydrogen ‘s powerful benefits.

Molecular hydrogen  H2 (water)  science is moving quickly beyond theory to practical applications.

Hydrogen water ionizers and generators allow medical professionals and consumers to leverage the health benefits of Molecular hydrogen Hwater.
“The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases.” Medical Gas Research 2015; 5:12

Benefits of Molecular Hydrogen water

 

“It is not an overestimate to say that hydrogen water’s’ impact on therapeutic and preventative medicine could be enormous in the future.”
Free Radical Research 2010

Why Molecular hydrogen  H2 (water)  is a Superlative Antioxidant

 

Chronic oxidative stress has been identified as one of the major causes of aging and modern chronic diseases. Everyone knows that there are many antioxidants available. However, they have shown only limited success in therapeutic trials.

Molecular hydrogen  H2 (water)  has some distinct advantages, causing researchers to propose it as a NOVEL antioxidant with superior therapeutic and preventive applications.

• Molecular hydrogen  H2 is the smallest molecule. Other antioxidants such as Vitamin C or Vitamin E are very large by comparison. They must also be digested, absorbed, transported and finally taken up by the cells.

Molecular hydrogen  H2 penetrates the stomach lining quickly and acts inside the cells immediately. It’s able to get into every part of the cell more quickly protecting DNA, RNA, and proteins against damaging oxidative stress.
• Each molecule of molecular hydrogen  H2 neutralizes two free radicals. It easily separates into two slightly charged atoms that neutralize the free radicals created from our daily oxidative stress. In the process, it creates water thus hydrating the cells.
• Molecular hydrogen  H2 is selective and targets only “bad” free radicals. Oxygen radicals are extremely damaging. However, your body also produces “good” free radicals, which serve useful purposes. Other antioxidants only partially neutralize radicals, both the good and bad ones. Worse, these antioxidants can then become free radicals themselves once they’ve done their job. H2 selectively goes after only the bad radicals and unlike other antioxidants, neutralizes them completely.

Molecular hydrogen (water) – The Best Anti-Aging Supplement?

 

Our modern lifestyle has greatly increased the oxidative stress on our body, leading to alarmingly increased rates of chronic disease and poor health. As a culture, we are out of balance and aging and we lack something to naturally and universally address the decline that comes with aging. The science is clear: Molecular hydrogen  water is a powerful and effective foundation for better health, wellness, and slowing the aging process.

• Molecular hydrogen  H2 (water)  reduces inflammation and pain. As we age, we ache more. Molecular hydrogen  H2 has been shown to be a powerful anti-inflammatory. Molecular hydrogen  is also can potentially modify the switched on genes that create a constant state inflammation.
• Molecular hydrogen  H2 (water) supports optimal cognitive function. The brain is 2-4% of your body’s weight but consumes 20-40% of the oxygen you breathe. Since 2-5% of the oxygen you breathe turns into free radicals, your brain is highly susceptible to oxidative stress damage. molecular hydrogen  H2 (water) neutralizes excess free radicals that occur in the brain.
• Molecular hydrogen  H2 (water) promotes cellular health. Research shows Molecular hydrogen  H2 (water) alters cell signaling, cell metabolism, and gene expression. This may explain its anti-inflammatory, anti-allergic, and anti-apoptotic (or anti-cell death) effects.
• Molecular hydrogen  H2 (water) activates production of your own antioxidant levels. Molecular hydrogen  H2 (water) triggers activation of antioxidant enzymes in the body (e.g., glutathione peroxidase, super-oxide dismutase, catalase, etc.) and/or proteins that protect the cell. Each one of these enzymes takes care of different kinds of free radicals, and they work together to keep the cells healthy.

Exerciser or Athlete , molecular hydrogen  Water is Your Secret Weapon!!!

 

Athletes and people who exercise experience more oxidative stress than sedentary individuals. They are also more vulnerable to the effects of chronic dehydration.

• Molecular hydrogen  H2 (water) helps Improve Energy Levels. Adenosine Triphosphate (ATP) is the fuel that powers your cells during physical activity. Research shows molecular hydrogen H2 increases ATP production, helping you maintain high energy and better performance.
• Molecular hydrogen  H2 (water) Improves Performance and Recovery Time. When you exercise, your lactic acid increases, leading to fatigue, muscle damage, decreased endurance, reduced performance, and poor results. Peer-reviewed research on athletes shows that Molecular hydrogen  H2 water decreases lactic acid levels leading to better performance and faster recovery.
• Molecular hydrogen  H2 (water ) Reduces Oxidative Stress. When we exercise we use more oxygen generating more damaging oxygen radicals leading to increased oxidative stress. Molecular hydrogen  H2 easily enters sub-cellular compartments helping to protect them from damaging cytotoxic oxygen radicals.
• Molecular hydrogen  H2 (water) Improves Your Hydration. When  hydrogen H2 molecules combine with and neutralize damaging oxygen radicals, they are transformed into water (H2O) – increasing your cellular hydration. Molecular hydrogen H2 infused alkaline ionized water is also better absorbed by the body than regular tap water.

To summarize, whether at work or play, old or young, healthy or unhealthy, molecular hydrogen  water offers everyone a wide range of powerful benefits. Most supplements have one mechanism of action; molecular hydrogen  water (and H2 tablets) offers many. It has a very solid and growing body of science to back up molecular hydrogen water’s therapeutic benefits. So if you’re interested in optimizing your health and well-being, enjoying more energy and better mental clarity and improving your athletic performance, then what are you waiting for? Give your body the ability to thrive naturally. Join the molecular hydrogen water revolution. Do what got results in the research and drink hydrogen water. H2 infused UltraWater from AlkaViva is the perfect, easy and convenient way to get the cleanest and healthiest molecular hydrogen water.

For a list of some of the peer reviewed studies about molecular hydrogen water visit here.

For a discussion on the different types of products that produce molecular hydrogen water, please Click Here 

References:

1. ZHANG, J. Y., LIU, C., ZHOU, L., QU, K., WANG, R. T., TAI, M. H., LEI, J. C. W. L., WU, Q. F. & WANG, Z. X. (2012). A Review of Hydrogen as a New Medical Therapy. Hepato-Gastroenterology 59, 1026-1032.
2. SHIRAHATA, S. A. N. E. T. A. K. A. (2002). Reduced water for prevention of diseases. Animal Cell Technology: Basic and Applied Aspects 12, 25-30.
3. SHIRAHATA, S., HAMASAKI, T. & TERUYA, K. (2012). Advanced research on the health benefit of reduced water. Trends in Food Science & Technology 23, 124-131.
4. CONRAD, R., ARAGNO, M. & SEILER, W. (1983). Production and consumption of hydrogen in a eutrophic lake. Applied and Environmental Microbiology45,502-10