Tag Archives: apa hidrogenata/apa hidrogenizata/apa cu hidrogen molecular hidroxil

molecular hydrogen water for VASCULAR ENDOTHELIAL FUNCTION

The redox imbalance between nitric oxide and superoxide generated in the endothelium is thought to play a pivotal role in the development of endothelial dysfunction. A third reactive oxygen species (ROS), H2O2, is known to have both beneficial and detrimental effects on the vasculature. Nonetheless, the influence of the hydroxyl radical, a byproduct of H2O2 decay, is unclear, and there is no direct evidence that the hydroxyl radical impairs endothelial function in conduit arteries. Molecular hydrogen (H2) neutralizes detrimental ROS, especially the hydroxyl radical.


To assess the influence of the hydroxyl radical on the endothelium and to confirm that a gaseous antioxidant, molecular hydrogen H2, can be a useful modulator of blood vessel function.


The efficacy of water containing a high concentration of  molecular hydrogen H2 was tested by measuring flow-mediated dilation (FMD) of the brachial artery (BA). The subjects were randomly divided into two groups: the high- molecular hydrogen H2 water group, who drank high- molecular hydrogen H2 water containing 7 ppm molecular hydrogen H2 (3.5 mg molecular hydrogen H2 in 500 mL water); and the placebo group. Endothelial function was evaluated by measuring the FMD of the BA. After measurement of diameter of the BA and FMD at baseline, volunteers drank the high- molecular hydrogen H2 water or placebo water immediately and with a 30-minute interval; FMD was compared to baseline.


FMD increased in the high- molecular hydrogen H2 water group (eight males; eight females) from 6.80%±1.96% to 7.64%±1.68% (mean ± standard deviation) and decreased from 8.07%±2.41% to 6.87%±2.94% in the placebo group (ten males; eight females). The ratio to the baseline in the changes of FMD showed significant improvement (P<0.05) in the high- molecular hydrogen H2 water group compared to the placebo group.


molecular hydrogen H2 water may protect the vasculature from shear stress-derived detrimental ROS, such as the hydroxyl radical, by maintaining the nitric oxide-mediated vasomotor response.



 2014 Oct 17;10:591-7. doi: 10.2147/VHRM.S68844. eCollection 2014.
Consumption of water containing over 3.5 mg of dissolved molecular hydrogen could improve vascular endothelial function.

Author information

Department of Cardiology, Haradoi Hospital, Fukuoka, Japan.
MiZ Company Limited, Fujisawa, Kanagawa, Japan.
Department of Internal Medicine, Haradoi Hospital, Fukuoka, Japan.
Midorino Clinic, Aoba, Higashi-ku, Fukuoka, Japan.
Department of Rheumatology and Orthopedic Surgery, Haradoi Hospital, Fukuoka, Japan.

molecular hydrogen water for patients with RHEUMATOID ARTHRITIS : an open-label pilot study

Recently, molecular hydrogen (H2) was demonstrated to be a selective scavenger for the hydroxyl radical.

Although its etiology is unknown, the hydroxyl radical has been suggested to be involved in the pathogenesis of Rheumatoid arthritis( a chronic inflammatory disease characterized by the destruction of bone and cartilage..).

We hypothesized that molecular hydrogen H2 in the water could complement conventional therapy by reducing the oxidative stress in Rheumatoid arthritis

The method to prepare water containing extremely high concentration of molecular hydrogen H2 has been developed.

20 patients with rheumatoid arthritis (RA) drank 530 ml of water containing 4 to 5 ppm molecular hydrogen (high H2) water every day for 4 weeks. After a 4-week wash-out period, the patients drank the high molecular hidrogen H2 water for another 4 weeks.

Urinary 8-hydroxydeoxyguanine (8-OHdG) and disease activity (DAS28, using C-reactive protein [CRP] levels) was estimated at the end of each 4-week period.


Drinking high molecular hydrogen H2 water seems to raise the concentration of molecular hydrogen H2 more than the H2 molecular hydrogen saturated (1.6 ppm) water in vivo.

Urinary 8-OHdG was significantly reduced by 14.3% (p < 0.01) on average. DAS28 also decreased from 3.83 to 3.02 (p < 0.01) during the same period.

After the wash-out period, both the urinary 8-OHdG and the mean
DAS28 decreased, compared to the end of the drinking period.

During the second drinking period, the mean DAS28 was reduced from 2.83 to 2.26 (p < 0.01). Urinary 8-OHdG was not further reduced but remained below the baseline value.

All the 5 patients with early rheumatoid arthritis (duration < 12 months) who did not show antibodies against cyclic citrullinated peptides (ACPAs) achieved remission, and 4 of them became symptom-free at the end of the study.

Conclusions: The results suggest that the hydroxyl radical scavenger -molecular hydrogen H2(dissolved in water) effectively reduces oxidative stress in patients with rheumatoid arthritis. The symptoms of rheumatoid arthritis were significantly improved with high molecular hidrogen H2 water.


  • diatomic molecular hydrogen H2- Water Products 



Consumption of water containing a high
concentration of molecular hydrogen reduces
oxidative stress and disease activity in patients
with rheumatoid arthritis: an open-label pilot
Toru Ishibashi1*, Bunpei Sato2
, Mariko Rikitake1
, Tomoki Seo2
, Ryosuke Kurokawa2
, Yuichi Hara1
, Yuji Naritomi1
Hiroshi Hara1 and Tetsuhiko Nagao3

* Correspondence: toruishi@haradoi-hospital.com 1
Haradoi Hospital, Department of Rheumatology and Orthopaedic Surgery,
6-40-8 Aoba, Higashi-ku, Fukuoka 813-8588, Japan
Full list of author information is available at the end of the article
© 2012 Ishibashi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Cite this article as: Ishibashi et al.: Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Medical Gas Research 2012 2:27.